Cargando…

Instrumentation for negative ion detection.

The instrumentation and practical circuitry required for the detection of negative ions exiting the mass analysis section of a mass spectrometer is examined. The potentials needed to bias the electron multiplier when detecting negative ions from a low ion-energy mass spectrometer, e.g., a quadrupole...

Descripción completa

Detalles Bibliográficos
Autor principal: McKeown, M
Formato: Texto
Lenguaje:English
Publicado: 1980
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1637737/
https://www.ncbi.nlm.nih.gov/pubmed/7428750
Descripción
Sumario:The instrumentation and practical circuitry required for the detection of negative ions exiting the mass analysis section of a mass spectrometer is examined. The potentials needed to bias the electron multiplier when detecting negative ions from a low ion-energy mass spectrometer, e.g., a quadrupole, are contrasted with the biasing requirements of a mass spectrometer having high ion-energies, e.g., a magnetic sector. Methods of decoupling the biasing high voltage on the signal lead of the multiplier in pulse counting measurements are discussed in detail so that normal, ground referenced input, pulse preamplifiers may be used. Easily understood, practical rules for determining the values of circuit components are given together with a simplified theory of transferring pulse signals from multiplier collector to pulse preamplifier. The changes in circuitry needed when attempting to detect ions by current measurement methods from an electron multiplier area detailed. The effects of leakage currents into athe input of the current preamplifier and their avoidance bay using triaxial shielding on vacuum feed-throughs are explained. The article suggests possible methods of decoupling the high voltage referenced input and the ground referenced output of a current measuring preamplifier.