Cargando…

Hot receptors in the brain

Two major approaches have been employed for the development of novel drugs to treat chronic pain. The most traditional approach identifies molecules involved in pain as potential therapeutic targets and has focused mainly on the periphery and spinal cord. A more recent approach identifies molecules...

Descripción completa

Detalles Bibliográficos
Autores principales: Steenland, Hendrik W, Ko, Shanelle W, Wu, Long-Jun, Zhuo, Min
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2006
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1647269/
https://www.ncbi.nlm.nih.gov/pubmed/17092351
http://dx.doi.org/10.1186/1744-8069-2-34
Descripción
Sumario:Two major approaches have been employed for the development of novel drugs to treat chronic pain. The most traditional approach identifies molecules involved in pain as potential therapeutic targets and has focused mainly on the periphery and spinal cord. A more recent approach identifies molecules that are involved in long-term plasticity. Drugs developed through the latter approach are predicted to treat chronic, but not physiological or acute, pain. The TRPV1 (transient receptor potential vanilloid-1) receptor is involved in nociceptive processing, and is a candidate therapeutic target for pain. While most research on TRPV1 receptors has been conducted at the level of the spinal cord and peripheral structures, considerably less research has focused on supraspinal structures. This short paper summarizes progress made on TRPV1 receptors, and reviews research on the expression and function of TRPV1 receptors in supraspinal structures. We suggest that the TRPV1 receptor may be involved in pain processing in higher brain structures, such as the anterior cingulate cortex. In addition, some regions of the brain utilize the TRPV1 receptor for functions apparently unrelated to pain.