Cargando…

A need for a 'whole-istic functional genomics' approach in complex human diseases: arthritis

'Genomic tools', such as gene/protein chips, single nucleotide polymorphism and haplotype analyses, are empowering us to generate staggering amounts of correlative data, from human/animal genetics and from normal and disease-affected tissues obtained from complex diseases such as arthritis...

Descripción completa

Detalles Bibliográficos
Autor principal: Amin, Ashok R
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2003
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC165036/
https://www.ncbi.nlm.nih.gov/pubmed/12718747
Descripción
Sumario:'Genomic tools', such as gene/protein chips, single nucleotide polymorphism and haplotype analyses, are empowering us to generate staggering amounts of correlative data, from human/animal genetics and from normal and disease-affected tissues obtained from complex diseases such as arthritis. These tools are transforming molecular biology into a 'data rich' science, with subjects with an '-omic' suffix. These disciplines have to converge and integrate at a systemic level to examine the structure and dynamics of cellular and organismal function ('functionomics') simultaneously, using a multidimensional approach for cells, tissues, organs, rodents and Zebra fish models, which intertwines various approaches and readouts to study the development and homeostasis of a system. In summary, the postgenomic era of functionomics will facilitate narrowing the bridge between correlative data and causative data, thus integrating 'intercoms' of interacting and interdependent disciplines and forming a unified whole.