Cargando…
Quantifying errors without random sampling
BACKGROUND: All quantifications of mortality, morbidity, and other health measures involve numerous sources of error. The routine quantification of random sampling error makes it easy to forget that other sources of error can and should be quantified. When a quantification does not involve sampling,...
Autores principales: | Phillips, Carl V, LaPole, Luwanna M |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2003
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC166164/ https://www.ncbi.nlm.nih.gov/pubmed/12892568 http://dx.doi.org/10.1186/1471-2288-3-9 |
Ejemplares similares
-
Publication bias in situ
por: Phillips, Carl V
Publicado: (2004) -
Quantifying burden of disease to support public health policy in Belgium: opportunities and constraints
por: Devleesschauwer, Brecht, et al.
Publicado: (2014) -
Delusions and prediction error: clarifying the roles of behavioural and brain responses
por: Corlett, Philip Robert, et al.
Publicado: (2015) -
Prevention strategies to identify LASA errors: building and sustaining a culture of patient safety
por: Lizano-Díez, Irene, et al.
Publicado: (2020) -
Water displacement leg volumetry in clinical studies - A discussion of error sources
por: Rabe, Eberhard, et al.
Publicado: (2010)