Cargando…
Temporal and spatial control of transgene expression using laser induction of the hsp70 promoter
BACKGROUND: Precise temporal and spatial regulation of transgene expression is a critical tool to investigate gene function in developing organisms. The most commonly used technique to achieve tight control of transgene expression, however, requires the use of specific DNA enhancers that are difficu...
Autores principales: | , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2006
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1664555/ https://www.ncbi.nlm.nih.gov/pubmed/17116248 http://dx.doi.org/10.1186/1471-213X-6-55 |
_version_ | 1782131064457658368 |
---|---|
author | Ramos, Diane M Kamal, Firdous Wimmer, Ernst A Cartwright, Alexander N Monteiro, Antónia |
author_facet | Ramos, Diane M Kamal, Firdous Wimmer, Ernst A Cartwright, Alexander N Monteiro, Antónia |
author_sort | Ramos, Diane M |
collection | PubMed |
description | BACKGROUND: Precise temporal and spatial regulation of transgene expression is a critical tool to investigate gene function in developing organisms. The most commonly used technique to achieve tight control of transgene expression, however, requires the use of specific DNA enhancers that are difficult to characterize in non-model organisms. Here, we sought to eliminate the need for this type of sequence-based gene regulation and to open the field of functional genetics to a broader range of organisms. RESULTS: We have developed a new laser mediated method to heat shock groups of cells that provides precise spatio-temporal control of gene expression without requiring knowledge of specific enhancer sequences. We tested our laser-system in a transgenic line of Bicyclus anynana butterflies containing the EGFP reporter gene attached to the heat sensitive hsp70 promoter of Drosophila melanogaster. Whole organismal heat shocks demonstrated that this Drosophila promoter can drive gene expression in butterflies, and the subsequent laser heat shocks showed that it was possible to activate cell-specific gene expression in very precise patterns on developing pupal wings. CONCLUSION: This laser-mediated gene expression system will enable functional genetic investigations, i.e., the ectopic expression of genes and their knock-down in targeted groups of cells in model and non-model organisms with little or no available regulatory data, as long as a compatible heat-shock promoter is used and the target tissue is accessible to a laser beam. This technique will also be useful in evolutionary developmental biology as it will enable the study of the evolution of gene function across a variety of organisms. |
format | Text |
id | pubmed-1664555 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2006 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-16645552006-11-29 Temporal and spatial control of transgene expression using laser induction of the hsp70 promoter Ramos, Diane M Kamal, Firdous Wimmer, Ernst A Cartwright, Alexander N Monteiro, Antónia BMC Dev Biol Methodology Article BACKGROUND: Precise temporal and spatial regulation of transgene expression is a critical tool to investigate gene function in developing organisms. The most commonly used technique to achieve tight control of transgene expression, however, requires the use of specific DNA enhancers that are difficult to characterize in non-model organisms. Here, we sought to eliminate the need for this type of sequence-based gene regulation and to open the field of functional genetics to a broader range of organisms. RESULTS: We have developed a new laser mediated method to heat shock groups of cells that provides precise spatio-temporal control of gene expression without requiring knowledge of specific enhancer sequences. We tested our laser-system in a transgenic line of Bicyclus anynana butterflies containing the EGFP reporter gene attached to the heat sensitive hsp70 promoter of Drosophila melanogaster. Whole organismal heat shocks demonstrated that this Drosophila promoter can drive gene expression in butterflies, and the subsequent laser heat shocks showed that it was possible to activate cell-specific gene expression in very precise patterns on developing pupal wings. CONCLUSION: This laser-mediated gene expression system will enable functional genetic investigations, i.e., the ectopic expression of genes and their knock-down in targeted groups of cells in model and non-model organisms with little or no available regulatory data, as long as a compatible heat-shock promoter is used and the target tissue is accessible to a laser beam. This technique will also be useful in evolutionary developmental biology as it will enable the study of the evolution of gene function across a variety of organisms. BioMed Central 2006-11-20 /pmc/articles/PMC1664555/ /pubmed/17116248 http://dx.doi.org/10.1186/1471-213X-6-55 Text en Copyright © 2006 Ramos et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Methodology Article Ramos, Diane M Kamal, Firdous Wimmer, Ernst A Cartwright, Alexander N Monteiro, Antónia Temporal and spatial control of transgene expression using laser induction of the hsp70 promoter |
title | Temporal and spatial control of transgene expression using laser induction of the hsp70 promoter |
title_full | Temporal and spatial control of transgene expression using laser induction of the hsp70 promoter |
title_fullStr | Temporal and spatial control of transgene expression using laser induction of the hsp70 promoter |
title_full_unstemmed | Temporal and spatial control of transgene expression using laser induction of the hsp70 promoter |
title_short | Temporal and spatial control of transgene expression using laser induction of the hsp70 promoter |
title_sort | temporal and spatial control of transgene expression using laser induction of the hsp70 promoter |
topic | Methodology Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1664555/ https://www.ncbi.nlm.nih.gov/pubmed/17116248 http://dx.doi.org/10.1186/1471-213X-6-55 |
work_keys_str_mv | AT ramosdianem temporalandspatialcontroloftransgeneexpressionusinglaserinductionofthehsp70promoter AT kamalfirdous temporalandspatialcontroloftransgeneexpressionusinglaserinductionofthehsp70promoter AT wimmerernsta temporalandspatialcontroloftransgeneexpressionusinglaserinductionofthehsp70promoter AT cartwrightalexandern temporalandspatialcontroloftransgeneexpressionusinglaserinductionofthehsp70promoter AT monteiroantonia temporalandspatialcontroloftransgeneexpressionusinglaserinductionofthehsp70promoter |