Cargando…
Improving the Performance of SVM-RFE to Select Genes in Microarray Data
BACKGROUND: Recursive Feature Elimination is a common and well-studied method for reducing the number of attributes used for further analysis or development of prediction models. The effectiveness of the RFE algorithm is generally considered excellent, but the primary obstacle in using it is the amo...
Autores principales: | Ding, Yuanyuan, Wilkins, Dawn |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2006
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1683561/ https://www.ncbi.nlm.nih.gov/pubmed/17118133 http://dx.doi.org/10.1186/1471-2105-7-S2-S12 |
Ejemplares similares
-
SVM-RFE Based Feature Selection and Taguchi Parameters Optimization for Multiclass SVM Classifier
por: Huang, Mei-Ling, et al.
Publicado: (2014) -
Recursive gene selection based on maximum margin criterion: a comparison with SVM-RFE
por: Niijima, Satoshi, et al.
Publicado: (2006) -
Prediction of Drought-Resistant Genes in Arabidopsis thaliana Using SVM-RFE
por: Liang, Yanchun, et al.
Publicado: (2011) -
Selecting Feature Subsets Based on SVM-RFE and the Overlapping Ratio with Applications in Bioinformatics
por: Lin, Xiaohui, et al.
Publicado: (2017) -
SVM-RFE: selection and visualization of the most relevant features through non-linear kernels
por: Sanz, Hector, et al.
Publicado: (2018)