Cargando…
Support Vector Machine Implementations for Classification & Clustering
BACKGROUND: We describe Support Vector Machine (SVM) applications to classification and clustering of channel current data. SVMs are variational-calculus based methods that are constrained to have structural risk minimization (SRM), i.e., they provide noise tolerant solutions for pattern recognition...
Autores principales: | Winters-Hilt, Stephen, Yelundur, Anil, McChesney, Charlie, Landry, Matthew |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2006
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1683575/ https://www.ncbi.nlm.nih.gov/pubmed/17118147 http://dx.doi.org/10.1186/1471-2105-7-S2-S4 |
Ejemplares similares
-
Analysis of nanopore detector measurements using Machine-Learning methods, with application to single-molecule kinetic analysis
por: Landry, Matthew, et al.
Publicado: (2007) -
DNA Molecule Classification Using Feature Primitives
por: Iqbal, Raja Tanveer, et al.
Publicado: (2006) -
SVM clustering
por: Winters-Hilt, Stephen, et al.
Publicado: (2007) -
Clustering ionic flow blockade toggles with a Mixture of HMMs
por: Churbanov, Alexander, et al.
Publicado: (2008) -
The NTD Nanoscope: potential applications and implementations
por: Winters-Hilt, Stephen, et al.
Publicado: (2011)