Cargando…

Evidence that talin alternative splice variants from Ciona intestinalis have different roles in cell adhesion

BACKGROUND: Talins are large, modular cytoskeletal proteins found in animals and amoebozoans such as Dictyostelium discoideum. Since the identification of a second talin gene in vertebrates, it has become increasingly clear that vertebrate Talin1 and Talin2 have non-redundant roles as essential link...

Descripción completa

Detalles Bibliográficos
Autores principales: Singiser, Richard H, McCann, Richard O
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2006
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1702346/
https://www.ncbi.nlm.nih.gov/pubmed/17150103
http://dx.doi.org/10.1186/1471-2121-7-40
_version_ 1782131250904956928
author Singiser, Richard H
McCann, Richard O
author_facet Singiser, Richard H
McCann, Richard O
author_sort Singiser, Richard H
collection PubMed
description BACKGROUND: Talins are large, modular cytoskeletal proteins found in animals and amoebozoans such as Dictyostelium discoideum. Since the identification of a second talin gene in vertebrates, it has become increasingly clear that vertebrate Talin1 and Talin2 have non-redundant roles as essential links between integrins and the actin cytoskeleton in distinct plasma membrane-associated adhesion complexes. The conserved C-terminal I/LWEQ module is important for talin function. This structural element mediates the interaction of talins with F-actin. The I/LWEQ module also targets mammalian Talin1 to focal adhesion complexes, which are dynamic multicomponent assemblies required for cell adhesion and cell motility. Although Talin1 is essential for focal adhesion function, Talin2 is not targeted to focal adhesions. The nonvertebrate chordate Ciona intestinalis has only one talin gene, but alternative splicing of the talin mRNA produces two proteins with different C-terminal I/LWEQ modules. Thus, C. intestinalis contains two talins, Talin-a and Talin-b, with potentially different activities, despite having only one talin gene. RESULTS: We show here that, based on their distribution in cDNA libraries, Talin-a and Talin-b are differentially expressed during C. intestinalis development. The I/LWEQ modules of the two proteins also have different affinities for F-actin. Consistent with the hypothesis that Talin-a and Talin-b have different roles in cell adhesion, the distinct I/LWEQ modules of Talin-a and Talin-b possess different subcellular targeting determinants. The I/LWEQ module of Talin-a is targeted to focal adhesions, where it most likely serves as the link between integrin and the actin cytoskeleton. The Talin-b I/LWEQ module is not targeted to focal adhesions, but instead preferentially labels F-actin stress fibers. These different properties of C. intestinalis the Talin-a and Talin-b I/LWEQ modules mimic the differences between mammalian Talin1 and Talin2. CONCLUSION: Vertebrates and D. discoideum contain two talin genes that encode proteins with different functions. The urochordate C. intestinalis has a single talin gene but produces two separate talins by alternative splicing that vary in a domain crucial for talin function. This suggests that multicellular organisms require multiple talins as components of adhesion complexes. In C. intestinalis, alternative splicing, rather than gene duplication followed by neo-functionalization, accounts for the presence of multiple talins with different properties. Given that C. intestinalis is an excellent model system for chordate biology, the study of Talin-a and Talin-b will lead to a deeper understanding of cell adhesion in the chordate lineage and how talin functions have been parceled out to multiple proteins during metazoan evolution.
format Text
id pubmed-1702346
institution National Center for Biotechnology Information
language English
publishDate 2006
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-17023462006-12-15 Evidence that talin alternative splice variants from Ciona intestinalis have different roles in cell adhesion Singiser, Richard H McCann, Richard O BMC Cell Biol Research Article BACKGROUND: Talins are large, modular cytoskeletal proteins found in animals and amoebozoans such as Dictyostelium discoideum. Since the identification of a second talin gene in vertebrates, it has become increasingly clear that vertebrate Talin1 and Talin2 have non-redundant roles as essential links between integrins and the actin cytoskeleton in distinct plasma membrane-associated adhesion complexes. The conserved C-terminal I/LWEQ module is important for talin function. This structural element mediates the interaction of talins with F-actin. The I/LWEQ module also targets mammalian Talin1 to focal adhesion complexes, which are dynamic multicomponent assemblies required for cell adhesion and cell motility. Although Talin1 is essential for focal adhesion function, Talin2 is not targeted to focal adhesions. The nonvertebrate chordate Ciona intestinalis has only one talin gene, but alternative splicing of the talin mRNA produces two proteins with different C-terminal I/LWEQ modules. Thus, C. intestinalis contains two talins, Talin-a and Talin-b, with potentially different activities, despite having only one talin gene. RESULTS: We show here that, based on their distribution in cDNA libraries, Talin-a and Talin-b are differentially expressed during C. intestinalis development. The I/LWEQ modules of the two proteins also have different affinities for F-actin. Consistent with the hypothesis that Talin-a and Talin-b have different roles in cell adhesion, the distinct I/LWEQ modules of Talin-a and Talin-b possess different subcellular targeting determinants. The I/LWEQ module of Talin-a is targeted to focal adhesions, where it most likely serves as the link between integrin and the actin cytoskeleton. The Talin-b I/LWEQ module is not targeted to focal adhesions, but instead preferentially labels F-actin stress fibers. These different properties of C. intestinalis the Talin-a and Talin-b I/LWEQ modules mimic the differences between mammalian Talin1 and Talin2. CONCLUSION: Vertebrates and D. discoideum contain two talin genes that encode proteins with different functions. The urochordate C. intestinalis has a single talin gene but produces two separate talins by alternative splicing that vary in a domain crucial for talin function. This suggests that multicellular organisms require multiple talins as components of adhesion complexes. In C. intestinalis, alternative splicing, rather than gene duplication followed by neo-functionalization, accounts for the presence of multiple talins with different properties. Given that C. intestinalis is an excellent model system for chordate biology, the study of Talin-a and Talin-b will lead to a deeper understanding of cell adhesion in the chordate lineage and how talin functions have been parceled out to multiple proteins during metazoan evolution. BioMed Central 2006-12-06 /pmc/articles/PMC1702346/ /pubmed/17150103 http://dx.doi.org/10.1186/1471-2121-7-40 Text en Copyright © 2006 Singiser and McCann; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Singiser, Richard H
McCann, Richard O
Evidence that talin alternative splice variants from Ciona intestinalis have different roles in cell adhesion
title Evidence that talin alternative splice variants from Ciona intestinalis have different roles in cell adhesion
title_full Evidence that talin alternative splice variants from Ciona intestinalis have different roles in cell adhesion
title_fullStr Evidence that talin alternative splice variants from Ciona intestinalis have different roles in cell adhesion
title_full_unstemmed Evidence that talin alternative splice variants from Ciona intestinalis have different roles in cell adhesion
title_short Evidence that talin alternative splice variants from Ciona intestinalis have different roles in cell adhesion
title_sort evidence that talin alternative splice variants from ciona intestinalis have different roles in cell adhesion
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1702346/
https://www.ncbi.nlm.nih.gov/pubmed/17150103
http://dx.doi.org/10.1186/1471-2121-7-40
work_keys_str_mv AT singiserrichardh evidencethattalinalternativesplicevariantsfromcionaintestinalishavedifferentrolesincelladhesion
AT mccannrichardo evidencethattalinalternativesplicevariantsfromcionaintestinalishavedifferentrolesincelladhesion