Cargando…
Genetic algorithm for multi-objective experimental optimization
A new software tool making use of a genetic algorithm for multi-objective experimental optimization (GAME.opt) was developed based on a strength Pareto evolutionary algorithm. The software deals with high dimensional variable spaces and unknown interactions of design variables. This approach was eva...
Autores principales: | Link, Hannes, Weuster-Botz, Dirk |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Springer-Verlag
2006
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1705497/ https://www.ncbi.nlm.nih.gov/pubmed/17048033 http://dx.doi.org/10.1007/s00449-006-0087-7 |
Ejemplares similares
-
Multi-objective genetic algorithm for synchrotron radiation beamline optimization
por: Zhang, Junyu, et al.
Publicado: (2023) -
Machine learning-based protein crystal detection for monitoring of crystallization processes enabled with large-scale synthetic data sets of photorealistic images
por: Bischoff, Daniel, et al.
Publicado: (2022) -
Control of parallelized bioreactors I: dynamic scheduling software for efficient bioprocess management in high-throughput systems
por: Bromig, Lukas, et al.
Publicado: (2022) -
Accelerated Adaptive Laboratory Evolution by Automated Repeated Batch Processes in Parallelized Bioreactors
por: Bromig, Lukas, et al.
Publicado: (2023) -
Control of parallelized bioreactors II: probabilistic quantification of carboxylic acid reductase activity for bioprocess optimization
por: von den Eichen, Nikolas, et al.
Publicado: (2022)