Cargando…
Improving the batch-to-batch reproducibility in microbial cultures during recombinant protein production by guiding the process along a predefined total biomass profile
In industry Escherichia coli is the preferred host system for the heterologous biosynthesis of therapeutic proteins that do not need posttranslational modifications. In this report, the development of a robust high-cell-density fed-batch procedure for the efficient production of a therapeutic hormon...
Autores principales: | , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Springer-Verlag
2006
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1705514/ https://www.ncbi.nlm.nih.gov/pubmed/16955246 http://dx.doi.org/10.1007/s00449-006-0080-1 |
_version_ | 1782131278822244352 |
---|---|
author | Jenzsch, Marco Gnoth, Stefan Kleinschmidt, Martin Simutis, Rimvydas Lübbert, Andreas |
author_facet | Jenzsch, Marco Gnoth, Stefan Kleinschmidt, Martin Simutis, Rimvydas Lübbert, Andreas |
author_sort | Jenzsch, Marco |
collection | PubMed |
description | In industry Escherichia coli is the preferred host system for the heterologous biosynthesis of therapeutic proteins that do not need posttranslational modifications. In this report, the development of a robust high-cell-density fed-batch procedure for the efficient production of a therapeutic hormone is described. The strategy is to guide the process along a predefined profile of the total biomass that was derived from a given specific growth rate profile. This profile might have been built upon experience or derived from numerical process optimization. A surprisingly simple adaptive procedure correcting for deviations from the desired path was developed. In this way the batch-to-batch reproducibility can be drastically improved as compared to the process control strategies typically applied in industry. This applies not only to the biomass but, as the results clearly show, to the product titer also. |
format | Text |
id | pubmed-1705514 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2006 |
publisher | Springer-Verlag |
record_format | MEDLINE/PubMed |
spelling | pubmed-17055142006-12-18 Improving the batch-to-batch reproducibility in microbial cultures during recombinant protein production by guiding the process along a predefined total biomass profile Jenzsch, Marco Gnoth, Stefan Kleinschmidt, Martin Simutis, Rimvydas Lübbert, Andreas Bioprocess Biosyst Eng Original Paper In industry Escherichia coli is the preferred host system for the heterologous biosynthesis of therapeutic proteins that do not need posttranslational modifications. In this report, the development of a robust high-cell-density fed-batch procedure for the efficient production of a therapeutic hormone is described. The strategy is to guide the process along a predefined profile of the total biomass that was derived from a given specific growth rate profile. This profile might have been built upon experience or derived from numerical process optimization. A surprisingly simple adaptive procedure correcting for deviations from the desired path was developed. In this way the batch-to-batch reproducibility can be drastically improved as compared to the process control strategies typically applied in industry. This applies not only to the biomass but, as the results clearly show, to the product titer also. Springer-Verlag 2006-09-06 2006-12 /pmc/articles/PMC1705514/ /pubmed/16955246 http://dx.doi.org/10.1007/s00449-006-0080-1 Text en © Springer-Verlag 2006 |
spellingShingle | Original Paper Jenzsch, Marco Gnoth, Stefan Kleinschmidt, Martin Simutis, Rimvydas Lübbert, Andreas Improving the batch-to-batch reproducibility in microbial cultures during recombinant protein production by guiding the process along a predefined total biomass profile |
title | Improving the batch-to-batch reproducibility in microbial cultures during recombinant protein production by guiding the process along a predefined total biomass profile |
title_full | Improving the batch-to-batch reproducibility in microbial cultures during recombinant protein production by guiding the process along a predefined total biomass profile |
title_fullStr | Improving the batch-to-batch reproducibility in microbial cultures during recombinant protein production by guiding the process along a predefined total biomass profile |
title_full_unstemmed | Improving the batch-to-batch reproducibility in microbial cultures during recombinant protein production by guiding the process along a predefined total biomass profile |
title_short | Improving the batch-to-batch reproducibility in microbial cultures during recombinant protein production by guiding the process along a predefined total biomass profile |
title_sort | improving the batch-to-batch reproducibility in microbial cultures during recombinant protein production by guiding the process along a predefined total biomass profile |
topic | Original Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1705514/ https://www.ncbi.nlm.nih.gov/pubmed/16955246 http://dx.doi.org/10.1007/s00449-006-0080-1 |
work_keys_str_mv | AT jenzschmarco improvingthebatchtobatchreproducibilityinmicrobialculturesduringrecombinantproteinproductionbyguidingtheprocessalongapredefinedtotalbiomassprofile AT gnothstefan improvingthebatchtobatchreproducibilityinmicrobialculturesduringrecombinantproteinproductionbyguidingtheprocessalongapredefinedtotalbiomassprofile AT kleinschmidtmartin improvingthebatchtobatchreproducibilityinmicrobialculturesduringrecombinantproteinproductionbyguidingtheprocessalongapredefinedtotalbiomassprofile AT simutisrimvydas improvingthebatchtobatchreproducibilityinmicrobialculturesduringrecombinantproteinproductionbyguidingtheprocessalongapredefinedtotalbiomassprofile AT lubbertandreas improvingthebatchtobatchreproducibilityinmicrobialculturesduringrecombinantproteinproductionbyguidingtheprocessalongapredefinedtotalbiomassprofile |