Cargando…

A Modeling Study of Notch Noise Responses of Type III Units in the Gerbil Dorsal Cochlear Nucleus

A computational model of the neural circuitry of the gerbil dorsal cochlear nucleus (DCN), based on the MacGregor’s neuromime model, was used to simulate type III unit (P-cell) responses to notch noise stimuli. The DCN patch model is based on a previous computational model of the cat DCN [Hancock, K...

Descripción completa

Detalles Bibliográficos
Autores principales: Zheng, Xiaohan, Voigt, Herbert F.
Formato: Texto
Lenguaje:English
Publicado: Kluwer Academic Publishers-Plenum Publishers 2006
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1705519/
https://www.ncbi.nlm.nih.gov/pubmed/17228405
http://dx.doi.org/10.1007/s10439-006-9120-x
Descripción
Sumario:A computational model of the neural circuitry of the gerbil dorsal cochlear nucleus (DCN), based on the MacGregor’s neuromime model, was used to simulate type III unit (P-cell) responses to notch noise stimuli. The DCN patch model is based on a previous computational model of the cat DCN [Hancock, K. E., and H. F. Voigt. Ann. Biomed. Eng. 27:73–87, 1999]. According to the experimental study of Parsons et al. [Ann. Biomed. Eng. 29:887–896, 2001], the responses of gerbil DCN type III units to notch noise stimuli are similar to those of cat DCN type IV units, which are thought to be spectral notch detectors. This suggests that type III units in the gerbil DCN may serve as spectral notch detectors. In this modeling study, a simplified notch noise response plot—spike discharge rate vs. notch cutoff frequency plot—was used to compare model responses to the experimental results. Parameter estimation and sensitivity analysis of three connection parameters within the DCN patch have been studied and shows the model is robust, providing reasonable fits to the experimental data from 14 of 15 type III units examined [work supported by a grant from NIDCD, Boston University’s Biomedical Engineering department and Hearing Research Center].