Cargando…

What makes us human: revisiting an age-old question in the genomic era

In 1970, Karl Pribram took on the immense challenge of asking the question, what makes us human? Nearly four decades later, the most significant finding has been the undeniable realization of how incredibly subtle and fine-scaled the unique biological features of our species must be. The recent expl...

Descripción completa

Detalles Bibliográficos
Autores principales: Mekel-Bobrov, Nitzan, Lahn, Bruce T
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2006
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1716182/
https://www.ncbi.nlm.nih.gov/pubmed/17134487
http://dx.doi.org/10.1186/1747-5333-1-18
Descripción
Sumario:In 1970, Karl Pribram took on the immense challenge of asking the question, what makes us human? Nearly four decades later, the most significant finding has been the undeniable realization of how incredibly subtle and fine-scaled the unique biological features of our species must be. The recent explosion in the availability of large-scale sequence data, however, and the consequent emergence of comparative genomics, are rapidly transforming the study of human evolution. The field of comparative genomics is allowing us to reach unparalleled resolution, reframing our questions in reference to DNA sequence – the very unit that evolution operates on. But like any reductionist approach, it comes at a price. Comparative genomics may provide the necessary resolution for identifying rare DNA sequence differences in a vast sea of conservation, but ultimately we will have to face the challenge of figuring out how DNA sequence divergence translates into phenotypic divergence. Our goal here is to provide a brief outline of the major findings made in the study of human brain evolution since the Pribram lecture, focusing specifically on the field of comparative genomics. We then discuss the broader implications of these findings and the future challenges that are in store.