Cargando…

Vaccine Efficacy in Senescent Mice Challenged with Recombinant SARS-CoV Bearing Epidemic and Zoonotic Spike Variants

BACKGROUND: In 2003, severe acute respiratory syndrome coronavirus (SARS-CoV) was identified as the etiological agent of severe acute respiratory syndrome, a disease characterized by severe pneumonia that sometimes results in death. SARS-CoV is a zoonotic virus that crossed the species barrier, most...

Descripción completa

Detalles Bibliográficos
Autores principales: Deming, Damon, Sheahan, Timothy, Heise, Mark, Yount, Boyd, Davis, Nancy, Sims, Amy, Suthar, Mehul, Harkema, Jack, Whitmore, Alan, Pickles, Raymond, West, Ande, Donaldson, Eric, Curtis, Kristopher, Johnston, Robert, Baric, Ralph
Formato: Texto
Lenguaje:English
Publicado: Public Library of Science 2006
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1716185/
https://www.ncbi.nlm.nih.gov/pubmed/17194199
http://dx.doi.org/10.1371/journal.pmed.0030525
_version_ 1782131320017649664
author Deming, Damon
Sheahan, Timothy
Heise, Mark
Yount, Boyd
Davis, Nancy
Sims, Amy
Suthar, Mehul
Harkema, Jack
Whitmore, Alan
Pickles, Raymond
West, Ande
Donaldson, Eric
Curtis, Kristopher
Johnston, Robert
Baric, Ralph
author_facet Deming, Damon
Sheahan, Timothy
Heise, Mark
Yount, Boyd
Davis, Nancy
Sims, Amy
Suthar, Mehul
Harkema, Jack
Whitmore, Alan
Pickles, Raymond
West, Ande
Donaldson, Eric
Curtis, Kristopher
Johnston, Robert
Baric, Ralph
author_sort Deming, Damon
collection PubMed
description BACKGROUND: In 2003, severe acute respiratory syndrome coronavirus (SARS-CoV) was identified as the etiological agent of severe acute respiratory syndrome, a disease characterized by severe pneumonia that sometimes results in death. SARS-CoV is a zoonotic virus that crossed the species barrier, most likely originating from bats or from other species including civets, raccoon dogs, domestic cats, swine, and rodents. A SARS-CoV vaccine should confer long-term protection, especially in vulnerable senescent populations, against both the 2003 epidemic strains and zoonotic strains that may yet emerge from animal reservoirs. We report the comprehensive investigation of SARS vaccine efficacy in young and senescent mice following homologous and heterologous challenge. METHODS AND FINDINGS: Using Venezuelan equine encephalitis virus replicon particles (VRP) expressing the 2003 epidemic Urbani SARS-CoV strain spike (S) glycoprotein (VRP-S) or the nucleocapsid (N) protein from the same strain (VRP-N), we demonstrate that VRP-S, but not VRP-N vaccines provide complete short- and long-term protection against homologous strain challenge in young and senescent mice. To test VRP vaccine efficacy against a heterologous SARS-CoV, we used phylogenetic analyses, synthetic biology, and reverse genetics to construct a chimeric virus (icGDO3-S) encoding a synthetic S glycoprotein gene of the most genetically divergent human strain, GDO3, which clusters among the zoonotic SARS-CoV. icGD03-S replicated efficiently in human airway epithelial cells and in the lungs of young and senescent mice, and was highly resistant to neutralization with antisera directed against the Urbani strain. Although VRP-S vaccines provided complete short-term protection against heterologous icGD03-S challenge in young mice, only limited protection was seen in vaccinated senescent animals. VRP-N vaccines not only failed to protect from homologous or heterologous challenge, but resulted in enhanced immunopathology with eosinophilic infiltrates within the lungs of SARS-CoV–challenged mice. VRP-N–induced pathology presented at day 4, peaked around day 7, and persisted through day 14, and was likely mediated by cellular immune responses. CONCLUSIONS: This study identifies gaps and challenges in vaccine design for controlling future SARS-CoV zoonosis, especially in vulnerable elderly populations. The availability of a SARS-CoV virus bearing heterologous S glycoproteins provides a robust challenge inoculum for evaluating vaccine efficacy against zoonotic strains, the most likely source of future outbreaks.
format Text
id pubmed-1716185
institution National Center for Biotechnology Information
language English
publishDate 2006
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-17161852007-03-24 Vaccine Efficacy in Senescent Mice Challenged with Recombinant SARS-CoV Bearing Epidemic and Zoonotic Spike Variants Deming, Damon Sheahan, Timothy Heise, Mark Yount, Boyd Davis, Nancy Sims, Amy Suthar, Mehul Harkema, Jack Whitmore, Alan Pickles, Raymond West, Ande Donaldson, Eric Curtis, Kristopher Johnston, Robert Baric, Ralph PLoS Med Research Article BACKGROUND: In 2003, severe acute respiratory syndrome coronavirus (SARS-CoV) was identified as the etiological agent of severe acute respiratory syndrome, a disease characterized by severe pneumonia that sometimes results in death. SARS-CoV is a zoonotic virus that crossed the species barrier, most likely originating from bats or from other species including civets, raccoon dogs, domestic cats, swine, and rodents. A SARS-CoV vaccine should confer long-term protection, especially in vulnerable senescent populations, against both the 2003 epidemic strains and zoonotic strains that may yet emerge from animal reservoirs. We report the comprehensive investigation of SARS vaccine efficacy in young and senescent mice following homologous and heterologous challenge. METHODS AND FINDINGS: Using Venezuelan equine encephalitis virus replicon particles (VRP) expressing the 2003 epidemic Urbani SARS-CoV strain spike (S) glycoprotein (VRP-S) or the nucleocapsid (N) protein from the same strain (VRP-N), we demonstrate that VRP-S, but not VRP-N vaccines provide complete short- and long-term protection against homologous strain challenge in young and senescent mice. To test VRP vaccine efficacy against a heterologous SARS-CoV, we used phylogenetic analyses, synthetic biology, and reverse genetics to construct a chimeric virus (icGDO3-S) encoding a synthetic S glycoprotein gene of the most genetically divergent human strain, GDO3, which clusters among the zoonotic SARS-CoV. icGD03-S replicated efficiently in human airway epithelial cells and in the lungs of young and senescent mice, and was highly resistant to neutralization with antisera directed against the Urbani strain. Although VRP-S vaccines provided complete short-term protection against heterologous icGD03-S challenge in young mice, only limited protection was seen in vaccinated senescent animals. VRP-N vaccines not only failed to protect from homologous or heterologous challenge, but resulted in enhanced immunopathology with eosinophilic infiltrates within the lungs of SARS-CoV–challenged mice. VRP-N–induced pathology presented at day 4, peaked around day 7, and persisted through day 14, and was likely mediated by cellular immune responses. CONCLUSIONS: This study identifies gaps and challenges in vaccine design for controlling future SARS-CoV zoonosis, especially in vulnerable elderly populations. The availability of a SARS-CoV virus bearing heterologous S glycoproteins provides a robust challenge inoculum for evaluating vaccine efficacy against zoonotic strains, the most likely source of future outbreaks. Public Library of Science 2006-12 2006-12-26 /pmc/articles/PMC1716185/ /pubmed/17194199 http://dx.doi.org/10.1371/journal.pmed.0030525 Text en © 2006 Deming, et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Deming, Damon
Sheahan, Timothy
Heise, Mark
Yount, Boyd
Davis, Nancy
Sims, Amy
Suthar, Mehul
Harkema, Jack
Whitmore, Alan
Pickles, Raymond
West, Ande
Donaldson, Eric
Curtis, Kristopher
Johnston, Robert
Baric, Ralph
Vaccine Efficacy in Senescent Mice Challenged with Recombinant SARS-CoV Bearing Epidemic and Zoonotic Spike Variants
title Vaccine Efficacy in Senescent Mice Challenged with Recombinant SARS-CoV Bearing Epidemic and Zoonotic Spike Variants
title_full Vaccine Efficacy in Senescent Mice Challenged with Recombinant SARS-CoV Bearing Epidemic and Zoonotic Spike Variants
title_fullStr Vaccine Efficacy in Senescent Mice Challenged with Recombinant SARS-CoV Bearing Epidemic and Zoonotic Spike Variants
title_full_unstemmed Vaccine Efficacy in Senescent Mice Challenged with Recombinant SARS-CoV Bearing Epidemic and Zoonotic Spike Variants
title_short Vaccine Efficacy in Senescent Mice Challenged with Recombinant SARS-CoV Bearing Epidemic and Zoonotic Spike Variants
title_sort vaccine efficacy in senescent mice challenged with recombinant sars-cov bearing epidemic and zoonotic spike variants
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1716185/
https://www.ncbi.nlm.nih.gov/pubmed/17194199
http://dx.doi.org/10.1371/journal.pmed.0030525
work_keys_str_mv AT demingdamon vaccineefficacyinsenescentmicechallengedwithrecombinantsarscovbearingepidemicandzoonoticspikevariants
AT sheahantimothy vaccineefficacyinsenescentmicechallengedwithrecombinantsarscovbearingepidemicandzoonoticspikevariants
AT heisemark vaccineefficacyinsenescentmicechallengedwithrecombinantsarscovbearingepidemicandzoonoticspikevariants
AT yountboyd vaccineefficacyinsenescentmicechallengedwithrecombinantsarscovbearingepidemicandzoonoticspikevariants
AT davisnancy vaccineefficacyinsenescentmicechallengedwithrecombinantsarscovbearingepidemicandzoonoticspikevariants
AT simsamy vaccineefficacyinsenescentmicechallengedwithrecombinantsarscovbearingepidemicandzoonoticspikevariants
AT sutharmehul vaccineefficacyinsenescentmicechallengedwithrecombinantsarscovbearingepidemicandzoonoticspikevariants
AT harkemajack vaccineefficacyinsenescentmicechallengedwithrecombinantsarscovbearingepidemicandzoonoticspikevariants
AT whitmorealan vaccineefficacyinsenescentmicechallengedwithrecombinantsarscovbearingepidemicandzoonoticspikevariants
AT picklesraymond vaccineefficacyinsenescentmicechallengedwithrecombinantsarscovbearingepidemicandzoonoticspikevariants
AT westande vaccineefficacyinsenescentmicechallengedwithrecombinantsarscovbearingepidemicandzoonoticspikevariants
AT donaldsoneric vaccineefficacyinsenescentmicechallengedwithrecombinantsarscovbearingepidemicandzoonoticspikevariants
AT curtiskristopher vaccineefficacyinsenescentmicechallengedwithrecombinantsarscovbearingepidemicandzoonoticspikevariants
AT johnstonrobert vaccineefficacyinsenescentmicechallengedwithrecombinantsarscovbearingepidemicandzoonoticspikevariants
AT baricralph vaccineefficacyinsenescentmicechallengedwithrecombinantsarscovbearingepidemicandzoonoticspikevariants