Cargando…

Operon prediction in Pyrococcus furiosus

Identification of operons in the hyperthermophilic archaeon Pyrococcus furiosus represents an important step to understanding the regulatory mechanisms that enable the organism to adapt and thrive in extreme environments. We have predicted operons in P.furiosus by combining the results from three ex...

Descripción completa

Detalles Bibliográficos
Autores principales: Tran, Thao T., Dam, Phuongan, Su, Zhengchang, Poole, Farris L., Adams, Michael W. W., Zhou, G. Tong, Xu, Ying
Formato: Texto
Lenguaje:English
Publicado: Oxford University Press 2007
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1761436/
https://www.ncbi.nlm.nih.gov/pubmed/17148478
http://dx.doi.org/10.1093/nar/gkl974
_version_ 1782131448369643520
author Tran, Thao T.
Dam, Phuongan
Su, Zhengchang
Poole, Farris L.
Adams, Michael W. W.
Zhou, G. Tong
Xu, Ying
author_facet Tran, Thao T.
Dam, Phuongan
Su, Zhengchang
Poole, Farris L.
Adams, Michael W. W.
Zhou, G. Tong
Xu, Ying
author_sort Tran, Thao T.
collection PubMed
description Identification of operons in the hyperthermophilic archaeon Pyrococcus furiosus represents an important step to understanding the regulatory mechanisms that enable the organism to adapt and thrive in extreme environments. We have predicted operons in P.furiosus by combining the results from three existing algorithms using a neural network (NN). These algorithms use intergenic distances, phylogenetic profiles, functional categories and gene-order conservation in their operon prediction. Our method takes as inputs the confidence scores of the three programs, and outputs a prediction of whether adjacent genes on the same strand belong to the same operon. In addition, we have applied Gene Ontology (GO) and KEGG pathway information to improve the accuracy of our algorithm. The parameters of this NN predictor are trained on a subset of all experimentally verified operon gene pairs of Bacillus subtilis. It subsequently achieved 86.5% prediction accuracy when applied to a subset of gene pairs for Escherichia coli, which is substantially better than any of the three prediction programs. Using this new algorithm, we predicted 470 operons in the P.furiosus genome. Of these, 349 were validated using DNA microarray data.
format Text
id pubmed-1761436
institution National Center for Biotechnology Information
language English
publishDate 2007
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-17614362007-03-01 Operon prediction in Pyrococcus furiosus Tran, Thao T. Dam, Phuongan Su, Zhengchang Poole, Farris L. Adams, Michael W. W. Zhou, G. Tong Xu, Ying Nucleic Acids Res Computational Biology Identification of operons in the hyperthermophilic archaeon Pyrococcus furiosus represents an important step to understanding the regulatory mechanisms that enable the organism to adapt and thrive in extreme environments. We have predicted operons in P.furiosus by combining the results from three existing algorithms using a neural network (NN). These algorithms use intergenic distances, phylogenetic profiles, functional categories and gene-order conservation in their operon prediction. Our method takes as inputs the confidence scores of the three programs, and outputs a prediction of whether adjacent genes on the same strand belong to the same operon. In addition, we have applied Gene Ontology (GO) and KEGG pathway information to improve the accuracy of our algorithm. The parameters of this NN predictor are trained on a subset of all experimentally verified operon gene pairs of Bacillus subtilis. It subsequently achieved 86.5% prediction accuracy when applied to a subset of gene pairs for Escherichia coli, which is substantially better than any of the three prediction programs. Using this new algorithm, we predicted 470 operons in the P.furiosus genome. Of these, 349 were validated using DNA microarray data. Oxford University Press 2007-01 2006-12-05 /pmc/articles/PMC1761436/ /pubmed/17148478 http://dx.doi.org/10.1093/nar/gkl974 Text en © 2006 The Author(s) This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Computational Biology
Tran, Thao T.
Dam, Phuongan
Su, Zhengchang
Poole, Farris L.
Adams, Michael W. W.
Zhou, G. Tong
Xu, Ying
Operon prediction in Pyrococcus furiosus
title Operon prediction in Pyrococcus furiosus
title_full Operon prediction in Pyrococcus furiosus
title_fullStr Operon prediction in Pyrococcus furiosus
title_full_unstemmed Operon prediction in Pyrococcus furiosus
title_short Operon prediction in Pyrococcus furiosus
title_sort operon prediction in pyrococcus furiosus
topic Computational Biology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1761436/
https://www.ncbi.nlm.nih.gov/pubmed/17148478
http://dx.doi.org/10.1093/nar/gkl974
work_keys_str_mv AT tranthaot operonpredictioninpyrococcusfuriosus
AT damphuongan operonpredictioninpyrococcusfuriosus
AT suzhengchang operonpredictioninpyrococcusfuriosus
AT poolefarrisl operonpredictioninpyrococcusfuriosus
AT adamsmichaelww operonpredictioninpyrococcusfuriosus
AT zhougtong operonpredictioninpyrococcusfuriosus
AT xuying operonpredictioninpyrococcusfuriosus