Cargando…
Connectivity in the Yeast Cell Cycle Transcription Network: Inferences from Neural Networks
A current challenge is to develop computational approaches to infer gene network regulatory relationships based on multiple types of large-scale functional genomic data. We find that single-layer feed-forward artificial neural network (ANN) models can effectively discover gene network structure by i...
Autores principales: | Hart, Christopher E, Mjolsness, Eric, Wold, Barbara J |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2006
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1761652/ https://www.ncbi.nlm.nih.gov/pubmed/17194216 http://dx.doi.org/10.1371/journal.pcbi.0020169 |
Ejemplares similares
-
Stochastic simulation for the inference of transcriptional control network of yeast cyclins genes
por: Vohradsky, Jiri
Publicado: (2012) -
Transcription factor redundancy and tissue-specific regulation: Evidence from functional and physical network connectivity
por: Kuntz, Steven G., et al.
Publicado: (2012) -
Modelling the network of cell cycle transcription factors in the yeast Saccharomyces cerevisiae
por: Cokus, Shawn, et al.
Publicado: (2006) -
Network inference reveals novel connections in pathways regulating growth and defense in the yeast salt response
por: MacGilvray, Matthew E., et al.
Publicado: (2018) -
A mathematical and computational framework for quantitative comparison and integration of large-scale gene expression data
por: Hart, Christopher E., et al.
Publicado: (2005)