Cargando…

Structure of the yeast histone H3-ASF1 interaction: implications for chaperone mechanism, species-specific interactions, and epigenetics

BACKGROUND: The histone H3/H4 chaperone Asf1 (anti-silencing function 1) is required for the establishment and maintenance of proper chromatin structure, as well as for genome stability in eukaryotes. Asf1 participates in both DNA replication-coupled (RC) and replication-independent (RI) histone dep...

Descripción completa

Detalles Bibliográficos
Autores principales: Antczak, Andrew J, Tsubota, Toshiaki, Kaufman, Paul D, Berger, James M
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2006
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1762009/
https://www.ncbi.nlm.nih.gov/pubmed/17166288
http://dx.doi.org/10.1186/1472-6807-6-26
Descripción
Sumario:BACKGROUND: The histone H3/H4 chaperone Asf1 (anti-silencing function 1) is required for the establishment and maintenance of proper chromatin structure, as well as for genome stability in eukaryotes. Asf1 participates in both DNA replication-coupled (RC) and replication-independent (RI) histone deposition reactions in vitro and interacts with complexes responsible for both pathways in vivo. Asf1 is known to directly bind histone H3, however, high-resolution structural information about the geometry of this interaction was previously unknown. RESULTS: Here we report the structure of a histone/histone chaperone interaction. We have solved the 2.2 Å crystal structure of the conserved N-terminal immunoglobulin fold domain of yeast Asf1 (residues 2–155) bound to the C-terminal helix of yeast histone H3 (residues 121–134). The structure defines a histone-binding patch on Asf1 consisting of both conserved and yeast-specific residues; mutation of these residues abrogates H3/H4 binding affinity. The geometry of the interaction indicates that Asf1 binds to histones H3/H4 in a manner that likely blocks sterically the H3/H3 interface of the nucleosomal four-helix bundle. CONCLUSION: These data clarify how Asf1 regulates histone stoichiometry to modulate epigenetic inheritance. The structure further suggests a physical model in which Asf1 contributes to interpretation of a "histone H3 barcode" for sorting H3 isoforms into different deposition pathways.