Cargando…
Comparative Toxicity of Fumigants and a Phosphine Synergist Using a Novel Containment Chamber for the Safe Generation of Concentrated Phosphine Gas
BACKGROUND: With the phasing out of ozone-depleting substances in accordance with the United Nations Montreal Protocol, phosphine remains as the only economically viable fumigant for widespread use. However the development of high-level resistance in several pest insects threatens the future usage o...
Autores principales: | , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2006
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1762414/ https://www.ncbi.nlm.nih.gov/pubmed/17205134 http://dx.doi.org/10.1371/journal.pone.0000130 |
_version_ | 1782131566449786880 |
---|---|
author | Valmas, Nicholas Ebert, Paul R. |
author_facet | Valmas, Nicholas Ebert, Paul R. |
author_sort | Valmas, Nicholas |
collection | PubMed |
description | BACKGROUND: With the phasing out of ozone-depleting substances in accordance with the United Nations Montreal Protocol, phosphine remains as the only economically viable fumigant for widespread use. However the development of high-level resistance in several pest insects threatens the future usage of phosphine; yet research into phosphine resistance mechanisms has been limited due to the potential for human poisoning in enclosed laboratory environments. PRINCIPAL FINDINGS: Here we describe a custom-designed chamber for safely containing phosphine gas generated from aluminium phosphide tablets. In an improvement on previous generation systems, this chamber can be completely sealed to control the escape of phosphine. The device has been utilised in a screening program with C. elegans that has identified a phosphine synergist, and quantified the efficacy of a new fumigant against that of phosphine. The phosphine-induced mortality at 20°C has been determined with an LC(50) of 732 ppm. This result was contrasted with the efficacy of a potential new botanical pesticide dimethyl disulphide, which for a 24 hour exposure at 20°C is 600 times more potent than phosphine (LC(50) 1.24 ppm). We also found that co-administration of the glutathione depletor diethyl maleate (DEM) with a sublethal dose of phosphine (70 ppm, <LC(5)), results in a doubling of mortality in C. elegans relative to DEM alone. CONCLUSIONS: The prohibitive danger associated with the generation, containment, and use of phosphine in a laboratory environment has now been substantially reduced by the implementation of our novel gas generation chamber. We have also identified a novel phosphine synergist, the glutathione depletor DEM, suggesting an effective pathway to be targeted in future synergist research; as well as quantifying the efficacy of a potential alternative to phosphine, dimethyl disulphide. |
format | Text |
id | pubmed-1762414 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2006 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-17624142007-01-04 Comparative Toxicity of Fumigants and a Phosphine Synergist Using a Novel Containment Chamber for the Safe Generation of Concentrated Phosphine Gas Valmas, Nicholas Ebert, Paul R. PLoS One Research Article BACKGROUND: With the phasing out of ozone-depleting substances in accordance with the United Nations Montreal Protocol, phosphine remains as the only economically viable fumigant for widespread use. However the development of high-level resistance in several pest insects threatens the future usage of phosphine; yet research into phosphine resistance mechanisms has been limited due to the potential for human poisoning in enclosed laboratory environments. PRINCIPAL FINDINGS: Here we describe a custom-designed chamber for safely containing phosphine gas generated from aluminium phosphide tablets. In an improvement on previous generation systems, this chamber can be completely sealed to control the escape of phosphine. The device has been utilised in a screening program with C. elegans that has identified a phosphine synergist, and quantified the efficacy of a new fumigant against that of phosphine. The phosphine-induced mortality at 20°C has been determined with an LC(50) of 732 ppm. This result was contrasted with the efficacy of a potential new botanical pesticide dimethyl disulphide, which for a 24 hour exposure at 20°C is 600 times more potent than phosphine (LC(50) 1.24 ppm). We also found that co-administration of the glutathione depletor diethyl maleate (DEM) with a sublethal dose of phosphine (70 ppm, <LC(5)), results in a doubling of mortality in C. elegans relative to DEM alone. CONCLUSIONS: The prohibitive danger associated with the generation, containment, and use of phosphine in a laboratory environment has now been substantially reduced by the implementation of our novel gas generation chamber. We have also identified a novel phosphine synergist, the glutathione depletor DEM, suggesting an effective pathway to be targeted in future synergist research; as well as quantifying the efficacy of a potential alternative to phosphine, dimethyl disulphide. Public Library of Science 2006-12-27 /pmc/articles/PMC1762414/ /pubmed/17205134 http://dx.doi.org/10.1371/journal.pone.0000130 Text en Valmas, Ebert. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Valmas, Nicholas Ebert, Paul R. Comparative Toxicity of Fumigants and a Phosphine Synergist Using a Novel Containment Chamber for the Safe Generation of Concentrated Phosphine Gas |
title | Comparative Toxicity of Fumigants and a Phosphine Synergist Using a Novel Containment Chamber for the Safe Generation of Concentrated Phosphine Gas |
title_full | Comparative Toxicity of Fumigants and a Phosphine Synergist Using a Novel Containment Chamber for the Safe Generation of Concentrated Phosphine Gas |
title_fullStr | Comparative Toxicity of Fumigants and a Phosphine Synergist Using a Novel Containment Chamber for the Safe Generation of Concentrated Phosphine Gas |
title_full_unstemmed | Comparative Toxicity of Fumigants and a Phosphine Synergist Using a Novel Containment Chamber for the Safe Generation of Concentrated Phosphine Gas |
title_short | Comparative Toxicity of Fumigants and a Phosphine Synergist Using a Novel Containment Chamber for the Safe Generation of Concentrated Phosphine Gas |
title_sort | comparative toxicity of fumigants and a phosphine synergist using a novel containment chamber for the safe generation of concentrated phosphine gas |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1762414/ https://www.ncbi.nlm.nih.gov/pubmed/17205134 http://dx.doi.org/10.1371/journal.pone.0000130 |
work_keys_str_mv | AT valmasnicholas comparativetoxicityoffumigantsandaphosphinesynergistusinganovelcontainmentchamberforthesafegenerationofconcentratedphosphinegas AT ebertpaulr comparativetoxicityoffumigantsandaphosphinesynergistusinganovelcontainmentchamberforthesafegenerationofconcentratedphosphinegas |