Cargando…
NERBio: using selected word conjunctions, term normalization, and global patterns to improve biomedical named entity recognition
BACKGROUND: Biomedical named entity recognition (Bio-NER) is a challenging problem because, in general, biomedical named entities of the same category (e.g., proteins and genes) do not follow one standard nomenclature. They have many irregularities and sometimes appear in ambiguous contexts. In rece...
Autores principales: | Tsai, Richard Tzong-Han, Sung, Cheng-Lung, Dai, Hong-Jie, Hung, Hsieh-Chuan, Sung, Ting-Yi, Hsu, Wen-Lian |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2006
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1764467/ https://www.ncbi.nlm.nih.gov/pubmed/17254295 http://dx.doi.org/10.1186/1471-2105-7-S5-S11 |
Ejemplares similares
-
Various criteria in the evaluation of biomedical named entity recognition
por: Tsai, Richard Tzong-Han, et al.
Publicado: (2006) -
NERChem: adapting NERBio to chemical patents via full-token features and named entity feature with chemical sub-class composition
por: Tsai, Richard Tzong-Han, et al.
Publicado: (2016) -
Evaluating Word Representation Features in Biomedical Named Entity Recognition Tasks
por: Tang, Buzhou, et al.
Publicado: (2014) -
Deep learning with word embeddings improves biomedical named entity recognition
por: Habibi, Maryam, et al.
Publicado: (2017) -
Comparing general and specialized word embeddings for biomedical named entity recognition
por: Ramos-Vargas, Rigo E., et al.
Publicado: (2021)