Cargando…
Splice site identification using probabilistic parameters and SVM classification
BACKGROUND: Recent advances and automation in DNA sequencing technology has created a vast amount of DNA sequence data. This increasing growth of sequence data demands better and efficient analysis methods. Identifying genes in this newly accumulated data is an important issue in bioinformatics, and...
Autores principales: | Baten, AKMA, Chang, BCH, Halgamuge, SK, Li, Jason |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2006
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1764471/ https://www.ncbi.nlm.nih.gov/pubmed/17254299 http://dx.doi.org/10.1186/1471-2105-7-S5-S15 |
Ejemplares similares
-
Correction: Splice site identification using probabilistic parameters and SVM classification
por: Baten, AKMA, et al.
Publicado: (2007) -
Fast splice site detection using information content and feature reduction
por: Baten, AKMA, et al.
Publicado: (2008) -
SVM-based prediction of caspase substrate cleavage sites
por: Wee, Lawrence JK, et al.
Publicado: (2006) -
SVM clustering
por: Winters-Hilt, Stephen, et al.
Publicado: (2007) -
Comparison of data-merging methods with SVM attribute selection and classification in breast cancer gene expression
por: Bevilacqua, Vitoantonio, et al.
Publicado: (2012)