Cargando…
Deep and comparative analysis of the mycelium and appressorium transcriptomes of Magnaporthe grisea using MPSS, RL-SAGE, and oligoarray methods
BACKGROUND: Rice blast, caused by the fungal pathogen Magnaporthe grisea, is a devastating disease causing tremendous yield loss in rice production. The public availability of the complete genome sequence of M. grisea provides ample opportunities to understand the molecular mechanism of its pathogen...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2006
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1764740/ https://www.ncbi.nlm.nih.gov/pubmed/17156450 http://dx.doi.org/10.1186/1471-2164-7-310 |
_version_ | 1782131634845253632 |
---|---|
author | Gowda, Malali Venu, RC Raghupathy, Mohan B Nobuta, Kan Li, Huameng Wing, Rod Stahlberg, Eric Couglan, Sean Haudenschild, Christian D Dean, Ralph Nahm, Baek-Hie Meyers, Blake C Wang, Guo-Liang |
author_facet | Gowda, Malali Venu, RC Raghupathy, Mohan B Nobuta, Kan Li, Huameng Wing, Rod Stahlberg, Eric Couglan, Sean Haudenschild, Christian D Dean, Ralph Nahm, Baek-Hie Meyers, Blake C Wang, Guo-Liang |
author_sort | Gowda, Malali |
collection | PubMed |
description | BACKGROUND: Rice blast, caused by the fungal pathogen Magnaporthe grisea, is a devastating disease causing tremendous yield loss in rice production. The public availability of the complete genome sequence of M. grisea provides ample opportunities to understand the molecular mechanism of its pathogenesis on rice plants at the transcriptome level. To identify all the expressed genes encoded in the fungal genome, we have analyzed the mycelium and appressorium transcriptomes using massively parallel signature sequencing (MPSS), robust-long serial analysis of gene expression (RL-SAGE) and oligoarray methods. RESULTS: The MPSS analyses identified 12,531 and 12,927 distinct significant tags from mycelia and appressoria, respectively, while the RL-SAGE analysis identified 16,580 distinct significant tags from the mycelial library. When matching these 12,531 mycelial and 12,927 appressorial significant tags to the annotated CDS, 500 bp upstream and 500 bp downstream of CDS, 6,735 unique genes in mycelia and 7,686 unique genes in appressoria were identified. A total of 7,135 mycelium-specific and 7,531 appressorium-specific significant MPSS tags were identified, which correspond to 2,088 and 1,784 annotated genes, respectively, when matching to the same set of reference sequences. Nearly 85% of the significant MPSS tags from mycelia and appressoria and 65% of the significant tags from the RL-SAGE mycelium library matched to the M. grisea genome. MPSS and RL-SAGE methods supported the expression of more than 9,000 genes, representing over 80% of the predicted genes in M. grisea. About 40% of the MPSS tags and 55% of the RL-SAGE tags represent novel transcripts since they had no matches in the existing M. grisea EST collections. Over 19% of the annotated genes were found to produce both sense and antisense tags in the protein-coding region. The oligoarray analysis identified the expression of 3,793 mycelium-specific and 4,652 appressorium-specific genes. A total of 2,430 mycelial genes and 1,886 appressorial genes were identified by both MPSS and oligoarray. CONCLUSION: The comprehensive and deep transcriptome analysis by MPSS and RL-SAGE methods identified many novel sense and antisense transcripts in the M. grisea genome at two important growth stages. The differentially expressed transcripts that were identified, especially those specifically expressed in appressoria, represent a genomic resource useful for gaining a better understanding of the molecular basis of M. grisea pathogenicity. Further analysis of the novel antisense transcripts will provide new insights into the regulation and function of these genes in fungal growth, development and pathogenesis in the host plants. |
format | Text |
id | pubmed-1764740 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2006 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-17647402007-01-09 Deep and comparative analysis of the mycelium and appressorium transcriptomes of Magnaporthe grisea using MPSS, RL-SAGE, and oligoarray methods Gowda, Malali Venu, RC Raghupathy, Mohan B Nobuta, Kan Li, Huameng Wing, Rod Stahlberg, Eric Couglan, Sean Haudenschild, Christian D Dean, Ralph Nahm, Baek-Hie Meyers, Blake C Wang, Guo-Liang BMC Genomics Research Article BACKGROUND: Rice blast, caused by the fungal pathogen Magnaporthe grisea, is a devastating disease causing tremendous yield loss in rice production. The public availability of the complete genome sequence of M. grisea provides ample opportunities to understand the molecular mechanism of its pathogenesis on rice plants at the transcriptome level. To identify all the expressed genes encoded in the fungal genome, we have analyzed the mycelium and appressorium transcriptomes using massively parallel signature sequencing (MPSS), robust-long serial analysis of gene expression (RL-SAGE) and oligoarray methods. RESULTS: The MPSS analyses identified 12,531 and 12,927 distinct significant tags from mycelia and appressoria, respectively, while the RL-SAGE analysis identified 16,580 distinct significant tags from the mycelial library. When matching these 12,531 mycelial and 12,927 appressorial significant tags to the annotated CDS, 500 bp upstream and 500 bp downstream of CDS, 6,735 unique genes in mycelia and 7,686 unique genes in appressoria were identified. A total of 7,135 mycelium-specific and 7,531 appressorium-specific significant MPSS tags were identified, which correspond to 2,088 and 1,784 annotated genes, respectively, when matching to the same set of reference sequences. Nearly 85% of the significant MPSS tags from mycelia and appressoria and 65% of the significant tags from the RL-SAGE mycelium library matched to the M. grisea genome. MPSS and RL-SAGE methods supported the expression of more than 9,000 genes, representing over 80% of the predicted genes in M. grisea. About 40% of the MPSS tags and 55% of the RL-SAGE tags represent novel transcripts since they had no matches in the existing M. grisea EST collections. Over 19% of the annotated genes were found to produce both sense and antisense tags in the protein-coding region. The oligoarray analysis identified the expression of 3,793 mycelium-specific and 4,652 appressorium-specific genes. A total of 2,430 mycelial genes and 1,886 appressorial genes were identified by both MPSS and oligoarray. CONCLUSION: The comprehensive and deep transcriptome analysis by MPSS and RL-SAGE methods identified many novel sense and antisense transcripts in the M. grisea genome at two important growth stages. The differentially expressed transcripts that were identified, especially those specifically expressed in appressoria, represent a genomic resource useful for gaining a better understanding of the molecular basis of M. grisea pathogenicity. Further analysis of the novel antisense transcripts will provide new insights into the regulation and function of these genes in fungal growth, development and pathogenesis in the host plants. BioMed Central 2006-12-08 /pmc/articles/PMC1764740/ /pubmed/17156450 http://dx.doi.org/10.1186/1471-2164-7-310 Text en Copyright © 2006 Gowda et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Gowda, Malali Venu, RC Raghupathy, Mohan B Nobuta, Kan Li, Huameng Wing, Rod Stahlberg, Eric Couglan, Sean Haudenschild, Christian D Dean, Ralph Nahm, Baek-Hie Meyers, Blake C Wang, Guo-Liang Deep and comparative analysis of the mycelium and appressorium transcriptomes of Magnaporthe grisea using MPSS, RL-SAGE, and oligoarray methods |
title | Deep and comparative analysis of the mycelium and appressorium transcriptomes of Magnaporthe grisea using MPSS, RL-SAGE, and oligoarray methods |
title_full | Deep and comparative analysis of the mycelium and appressorium transcriptomes of Magnaporthe grisea using MPSS, RL-SAGE, and oligoarray methods |
title_fullStr | Deep and comparative analysis of the mycelium and appressorium transcriptomes of Magnaporthe grisea using MPSS, RL-SAGE, and oligoarray methods |
title_full_unstemmed | Deep and comparative analysis of the mycelium and appressorium transcriptomes of Magnaporthe grisea using MPSS, RL-SAGE, and oligoarray methods |
title_short | Deep and comparative analysis of the mycelium and appressorium transcriptomes of Magnaporthe grisea using MPSS, RL-SAGE, and oligoarray methods |
title_sort | deep and comparative analysis of the mycelium and appressorium transcriptomes of magnaporthe grisea using mpss, rl-sage, and oligoarray methods |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1764740/ https://www.ncbi.nlm.nih.gov/pubmed/17156450 http://dx.doi.org/10.1186/1471-2164-7-310 |
work_keys_str_mv | AT gowdamalali deepandcomparativeanalysisofthemyceliumandappressoriumtranscriptomesofmagnaporthegriseausingmpssrlsageandoligoarraymethods AT venurc deepandcomparativeanalysisofthemyceliumandappressoriumtranscriptomesofmagnaporthegriseausingmpssrlsageandoligoarraymethods AT raghupathymohanb deepandcomparativeanalysisofthemyceliumandappressoriumtranscriptomesofmagnaporthegriseausingmpssrlsageandoligoarraymethods AT nobutakan deepandcomparativeanalysisofthemyceliumandappressoriumtranscriptomesofmagnaporthegriseausingmpssrlsageandoligoarraymethods AT lihuameng deepandcomparativeanalysisofthemyceliumandappressoriumtranscriptomesofmagnaporthegriseausingmpssrlsageandoligoarraymethods AT wingrod deepandcomparativeanalysisofthemyceliumandappressoriumtranscriptomesofmagnaporthegriseausingmpssrlsageandoligoarraymethods AT stahlbergeric deepandcomparativeanalysisofthemyceliumandappressoriumtranscriptomesofmagnaporthegriseausingmpssrlsageandoligoarraymethods AT couglansean deepandcomparativeanalysisofthemyceliumandappressoriumtranscriptomesofmagnaporthegriseausingmpssrlsageandoligoarraymethods AT haudenschildchristiand deepandcomparativeanalysisofthemyceliumandappressoriumtranscriptomesofmagnaporthegriseausingmpssrlsageandoligoarraymethods AT deanralph deepandcomparativeanalysisofthemyceliumandappressoriumtranscriptomesofmagnaporthegriseausingmpssrlsageandoligoarraymethods AT nahmbaekhie deepandcomparativeanalysisofthemyceliumandappressoriumtranscriptomesofmagnaporthegriseausingmpssrlsageandoligoarraymethods AT meyersblakec deepandcomparativeanalysisofthemyceliumandappressoriumtranscriptomesofmagnaporthegriseausingmpssrlsageandoligoarraymethods AT wangguoliang deepandcomparativeanalysisofthemyceliumandappressoriumtranscriptomesofmagnaporthegriseausingmpssrlsageandoligoarraymethods |