Cargando…

Prostaglandin E(2 )receptor subtype 2 (EP2) regulates microglial activation and associated neurotoxicity induced by aggregated α-synuclein

BACKGROUND: The pathogenesis of idiopathic Parkinson's disease (PD) remains elusive, although evidence has suggested that neuroinflammation characterized by activation of resident microglia in the brain may contribute significantly to neurodegeneration in PD. It has been demonstrated that aggre...

Descripción completa

Detalles Bibliográficos
Autores principales: Jin, Jinghua, Shie, Feng-Shiun, Liu, Jun, Wang, Yan, Davis, Jeanne, Schantz, Aimee M, Montine, Kathleen S, Montine, Thomas J, Zhang, Jing
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2007
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1766347/
https://www.ncbi.nlm.nih.gov/pubmed/17204153
http://dx.doi.org/10.1186/1742-2094-4-2
Descripción
Sumario:BACKGROUND: The pathogenesis of idiopathic Parkinson's disease (PD) remains elusive, although evidence has suggested that neuroinflammation characterized by activation of resident microglia in the brain may contribute significantly to neurodegeneration in PD. It has been demonstrated that aggregated α-synuclein potently activates microglia and causes neurotoxicity. However, the mechanisms by which aggregated α-synuclein activates microglia are not understood fully. METHODS: We investigated the role of prostaglandin E(2 )receptor subtype 2 (EP2) in α-synuclein aggregation-induced microglial activation using ex vivo, in vivo and in vitro experimental systems. RESULTS: Results demonstrated that ablation of EP2(EP2(-/-)) significantly enhanced microglia-mediated ex vivo clearance of α-synuclein aggregates (from mesocortex of Lewy body disease patients) while significantly attenuating neurotoxicity and extent of α-synuclein aggregation in mice treated with a parkinsonian toxicant 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Furthermore, we report that reduced neurotoxicity by EP2(-/- )microglia could be attributed to suppressed translocation of a critical cytoplasmic subunit (p47-phox) of NADPH oxidase (PHOX) to the membranous compartment after exposure to aggregated α-synuclein. CONCLUSION: Thus, it appears that microglial EP2 plays a critical role in α-synuclein-mediated neurotoxicity.