Cargando…

Estradiol effects on the dopamine transporter – protein levels, subcellular location, and function

BACKGROUND: The effects of estrogens on dopamine (DA) transport may have important implications for the increased incidence of neurological disorders in women during life stages when hormonal fluctuations are prevalent, e.g. during menarche, reproductive cycling, pregnancy, and peri-menopause. RESUL...

Descripción completa

Detalles Bibliográficos
Autores principales: Watson, Cheryl S, Alyea, Rebecca A, Hawkins, Bridget E, Thomas, Mary L, Cunningham, Kathryn A, Jakubas, Adrian A
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2006
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1769494/
https://www.ncbi.nlm.nih.gov/pubmed/17224081
http://dx.doi.org/10.1186/1750-2187-1-5
_version_ 1782131701879668736
author Watson, Cheryl S
Alyea, Rebecca A
Hawkins, Bridget E
Thomas, Mary L
Cunningham, Kathryn A
Jakubas, Adrian A
author_facet Watson, Cheryl S
Alyea, Rebecca A
Hawkins, Bridget E
Thomas, Mary L
Cunningham, Kathryn A
Jakubas, Adrian A
author_sort Watson, Cheryl S
collection PubMed
description BACKGROUND: The effects of estrogens on dopamine (DA) transport may have important implications for the increased incidence of neurological disorders in women during life stages when hormonal fluctuations are prevalent, e.g. during menarche, reproductive cycling, pregnancy, and peri-menopause. RESULTS: The activity of the DA transporter (DAT) was measured by the specific uptake of (3)H-DA. We found that low concentrations (10(-14 )to 10(-8 )M) of 17β-estradiol (E(2)) inhibit uptake via the DAT in PC12 cells over 30 minutes, with significant inhibition taking place due to E(2 )exposure during only the last five minutes of the uptake period. Such rapid action suggests a non-genomic, membrane-initiated estrogenic response mechanism. DAT and estrogen receptor-α (ERα) were elevated in cell extracts by a 20 ng/ml 2 day NGFβ treatment, while ERβ was not. DAT, ERα and ERβ were also detectable on the plasma membrane of unpermeabilized cells by immunocytochemical staining and by a fixed cell, quantitative antibody (Ab)-based plate assay. In addition, PC12 cells contained RNA coding for the alternative membrane ER GPR30; therefore, all 3 ER subtypes are candidates for mediating the rapid nongenomic actions of E(2). At cell densities above 15,000 cells per well, the E(2)-induced inhibition of transport was reversed. Uptake activity oscillated with time after a 10 nM E(2 )treatment; in a slower room temperature assay, inhibition peaked at 9 min, while uptake activity increased at 3 and 20–30 min. Using an Ab recognizing the second extracellular loop of DAT (accessible only on the outside of unpermeabilized cells), our immunoassay measured membrane vs. intracellular/nonvesicular DAT; both were found to decline over a 5–60 min E(2 )treatment, though immunoblot analyses demonstrated no total cellular loss of protein. CONCLUSION: Our results suggest that physiological levels of E(2 )may act to sequester DAT in intracellular compartments where the transporter's second extramembrane loop is inaccessible (inside vesicles) and that rapid estrogenic actions on this differentiated neuronal cell type may be regulated via membrane ERs of several types.
format Text
id pubmed-1769494
institution National Center for Biotechnology Information
language English
publishDate 2006
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-17694942007-01-16 Estradiol effects on the dopamine transporter – protein levels, subcellular location, and function Watson, Cheryl S Alyea, Rebecca A Hawkins, Bridget E Thomas, Mary L Cunningham, Kathryn A Jakubas, Adrian A J Mol Signal Research Article BACKGROUND: The effects of estrogens on dopamine (DA) transport may have important implications for the increased incidence of neurological disorders in women during life stages when hormonal fluctuations are prevalent, e.g. during menarche, reproductive cycling, pregnancy, and peri-menopause. RESULTS: The activity of the DA transporter (DAT) was measured by the specific uptake of (3)H-DA. We found that low concentrations (10(-14 )to 10(-8 )M) of 17β-estradiol (E(2)) inhibit uptake via the DAT in PC12 cells over 30 minutes, with significant inhibition taking place due to E(2 )exposure during only the last five minutes of the uptake period. Such rapid action suggests a non-genomic, membrane-initiated estrogenic response mechanism. DAT and estrogen receptor-α (ERα) were elevated in cell extracts by a 20 ng/ml 2 day NGFβ treatment, while ERβ was not. DAT, ERα and ERβ were also detectable on the plasma membrane of unpermeabilized cells by immunocytochemical staining and by a fixed cell, quantitative antibody (Ab)-based plate assay. In addition, PC12 cells contained RNA coding for the alternative membrane ER GPR30; therefore, all 3 ER subtypes are candidates for mediating the rapid nongenomic actions of E(2). At cell densities above 15,000 cells per well, the E(2)-induced inhibition of transport was reversed. Uptake activity oscillated with time after a 10 nM E(2 )treatment; in a slower room temperature assay, inhibition peaked at 9 min, while uptake activity increased at 3 and 20–30 min. Using an Ab recognizing the second extracellular loop of DAT (accessible only on the outside of unpermeabilized cells), our immunoassay measured membrane vs. intracellular/nonvesicular DAT; both were found to decline over a 5–60 min E(2 )treatment, though immunoblot analyses demonstrated no total cellular loss of protein. CONCLUSION: Our results suggest that physiological levels of E(2 )may act to sequester DAT in intracellular compartments where the transporter's second extramembrane loop is inaccessible (inside vesicles) and that rapid estrogenic actions on this differentiated neuronal cell type may be regulated via membrane ERs of several types. BioMed Central 2006-12-05 /pmc/articles/PMC1769494/ /pubmed/17224081 http://dx.doi.org/10.1186/1750-2187-1-5 Text en Copyright ©2006 Watson et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Watson, Cheryl S
Alyea, Rebecca A
Hawkins, Bridget E
Thomas, Mary L
Cunningham, Kathryn A
Jakubas, Adrian A
Estradiol effects on the dopamine transporter – protein levels, subcellular location, and function
title Estradiol effects on the dopamine transporter – protein levels, subcellular location, and function
title_full Estradiol effects on the dopamine transporter – protein levels, subcellular location, and function
title_fullStr Estradiol effects on the dopamine transporter – protein levels, subcellular location, and function
title_full_unstemmed Estradiol effects on the dopamine transporter – protein levels, subcellular location, and function
title_short Estradiol effects on the dopamine transporter – protein levels, subcellular location, and function
title_sort estradiol effects on the dopamine transporter – protein levels, subcellular location, and function
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1769494/
https://www.ncbi.nlm.nih.gov/pubmed/17224081
http://dx.doi.org/10.1186/1750-2187-1-5
work_keys_str_mv AT watsoncheryls estradioleffectsonthedopaminetransporterproteinlevelssubcellularlocationandfunction
AT alyearebeccaa estradioleffectsonthedopaminetransporterproteinlevelssubcellularlocationandfunction
AT hawkinsbridgete estradioleffectsonthedopaminetransporterproteinlevelssubcellularlocationandfunction
AT thomasmaryl estradioleffectsonthedopaminetransporterproteinlevelssubcellularlocationandfunction
AT cunninghamkathryna estradioleffectsonthedopaminetransporterproteinlevelssubcellularlocationandfunction
AT jakubasadriana estradioleffectsonthedopaminetransporterproteinlevelssubcellularlocationandfunction