Cargando…

Systematic interpretation of microarray data using experiment annotations

BACKGROUND: Up to now, microarray data are mostly assessed in context with only one or few parameters characterizing the experimental conditions under study. More explicit experiment annotations, however, are highly useful for interpreting microarray data, when available in a statistically accessibl...

Descripción completa

Detalles Bibliográficos
Autores principales: Fellenberg, Kurt, Busold, Christian H, Witt, Olaf, Bauer, Andrea, Beckmann, Boris, Hauser, Nicole C, Frohme, Marcus, Winter, Stefan, Dippon, Jürgen, Hoheisel, Jörg D
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2006
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1774576/
https://www.ncbi.nlm.nih.gov/pubmed/17181856
http://dx.doi.org/10.1186/1471-2164-7-319
_version_ 1782131725601603584
author Fellenberg, Kurt
Busold, Christian H
Witt, Olaf
Bauer, Andrea
Beckmann, Boris
Hauser, Nicole C
Frohme, Marcus
Winter, Stefan
Dippon, Jürgen
Hoheisel, Jörg D
author_facet Fellenberg, Kurt
Busold, Christian H
Witt, Olaf
Bauer, Andrea
Beckmann, Boris
Hauser, Nicole C
Frohme, Marcus
Winter, Stefan
Dippon, Jürgen
Hoheisel, Jörg D
author_sort Fellenberg, Kurt
collection PubMed
description BACKGROUND: Up to now, microarray data are mostly assessed in context with only one or few parameters characterizing the experimental conditions under study. More explicit experiment annotations, however, are highly useful for interpreting microarray data, when available in a statistically accessible format. RESULTS: We provide means to preprocess these additional data, and to extract relevant traits corresponding to the transcription patterns under study. We found correspondence analysis particularly well-suited for mapping such extracted traits. It visualizes associations both among and between the traits, the hereby annotated experiments, and the genes, revealing how they are all interrelated. Here, we apply our methods to the systematic interpretation of radioactive (single channel) and two-channel data, stemming from model organisms such as yeast and drosophila up to complex human cancer samples. Inclusion of technical parameters allows for identification of artifacts and flaws in experimental design. CONCLUSION: Biological and clinical traits can act as landmarks in transcription space, systematically mapping the variance of large datasets from the predominant changes down toward intricate details.
format Text
id pubmed-1774576
institution National Center for Biotechnology Information
language English
publishDate 2006
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-17745762007-01-22 Systematic interpretation of microarray data using experiment annotations Fellenberg, Kurt Busold, Christian H Witt, Olaf Bauer, Andrea Beckmann, Boris Hauser, Nicole C Frohme, Marcus Winter, Stefan Dippon, Jürgen Hoheisel, Jörg D BMC Genomics Methodology Article BACKGROUND: Up to now, microarray data are mostly assessed in context with only one or few parameters characterizing the experimental conditions under study. More explicit experiment annotations, however, are highly useful for interpreting microarray data, when available in a statistically accessible format. RESULTS: We provide means to preprocess these additional data, and to extract relevant traits corresponding to the transcription patterns under study. We found correspondence analysis particularly well-suited for mapping such extracted traits. It visualizes associations both among and between the traits, the hereby annotated experiments, and the genes, revealing how they are all interrelated. Here, we apply our methods to the systematic interpretation of radioactive (single channel) and two-channel data, stemming from model organisms such as yeast and drosophila up to complex human cancer samples. Inclusion of technical parameters allows for identification of artifacts and flaws in experimental design. CONCLUSION: Biological and clinical traits can act as landmarks in transcription space, systematically mapping the variance of large datasets from the predominant changes down toward intricate details. BioMed Central 2006-12-20 /pmc/articles/PMC1774576/ /pubmed/17181856 http://dx.doi.org/10.1186/1471-2164-7-319 Text en Copyright © 2006 Fellenberg et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Methodology Article
Fellenberg, Kurt
Busold, Christian H
Witt, Olaf
Bauer, Andrea
Beckmann, Boris
Hauser, Nicole C
Frohme, Marcus
Winter, Stefan
Dippon, Jürgen
Hoheisel, Jörg D
Systematic interpretation of microarray data using experiment annotations
title Systematic interpretation of microarray data using experiment annotations
title_full Systematic interpretation of microarray data using experiment annotations
title_fullStr Systematic interpretation of microarray data using experiment annotations
title_full_unstemmed Systematic interpretation of microarray data using experiment annotations
title_short Systematic interpretation of microarray data using experiment annotations
title_sort systematic interpretation of microarray data using experiment annotations
topic Methodology Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1774576/
https://www.ncbi.nlm.nih.gov/pubmed/17181856
http://dx.doi.org/10.1186/1471-2164-7-319
work_keys_str_mv AT fellenbergkurt systematicinterpretationofmicroarraydatausingexperimentannotations
AT busoldchristianh systematicinterpretationofmicroarraydatausingexperimentannotations
AT wittolaf systematicinterpretationofmicroarraydatausingexperimentannotations
AT bauerandrea systematicinterpretationofmicroarraydatausingexperimentannotations
AT beckmannboris systematicinterpretationofmicroarraydatausingexperimentannotations
AT hausernicolec systematicinterpretationofmicroarraydatausingexperimentannotations
AT frohmemarcus systematicinterpretationofmicroarraydatausingexperimentannotations
AT winterstefan systematicinterpretationofmicroarraydatausingexperimentannotations
AT dipponjurgen systematicinterpretationofmicroarraydatausingexperimentannotations
AT hoheiseljorgd systematicinterpretationofmicroarraydatausingexperimentannotations