Cargando…

The Inferelator: an algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo

We present a method (the Inferelator) for deriving genome-wide transcriptional regulatory interactions, and apply the method to predict a large portion of the regulatory network of the archaeon Halobacterium NRC-1. The Inferelator uses regression and variable selection to identify transcriptional in...

Descripción completa

Detalles Bibliográficos
Autores principales: Bonneau, Richard, Reiss, David J, Shannon, Paul, Facciotti, Marc, Hood, Leroy, Baliga, Nitin S, Thorsson, Vesteinn
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2006
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1779511/
https://www.ncbi.nlm.nih.gov/pubmed/16686963
http://dx.doi.org/10.1186/gb-2006-7-5-r36
_version_ 1782131789953761280
author Bonneau, Richard
Reiss, David J
Shannon, Paul
Facciotti, Marc
Hood, Leroy
Baliga, Nitin S
Thorsson, Vesteinn
author_facet Bonneau, Richard
Reiss, David J
Shannon, Paul
Facciotti, Marc
Hood, Leroy
Baliga, Nitin S
Thorsson, Vesteinn
author_sort Bonneau, Richard
collection PubMed
description We present a method (the Inferelator) for deriving genome-wide transcriptional regulatory interactions, and apply the method to predict a large portion of the regulatory network of the archaeon Halobacterium NRC-1. The Inferelator uses regression and variable selection to identify transcriptional influences on genes based on the integration of genome annotation and expression data. The learned network successfully predicted Halobacterium's global expression under novel perturbations with predictive power similar to that seen over training data. Several specific regulatory predictions were experimentally tested and verified.
format Text
id pubmed-1779511
institution National Center for Biotechnology Information
language English
publishDate 2006
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-17795112007-01-19 The Inferelator: an algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo Bonneau, Richard Reiss, David J Shannon, Paul Facciotti, Marc Hood, Leroy Baliga, Nitin S Thorsson, Vesteinn Genome Biol Method We present a method (the Inferelator) for deriving genome-wide transcriptional regulatory interactions, and apply the method to predict a large portion of the regulatory network of the archaeon Halobacterium NRC-1. The Inferelator uses regression and variable selection to identify transcriptional influences on genes based on the integration of genome annotation and expression data. The learned network successfully predicted Halobacterium's global expression under novel perturbations with predictive power similar to that seen over training data. Several specific regulatory predictions were experimentally tested and verified. BioMed Central 2006 2006-05-10 /pmc/articles/PMC1779511/ /pubmed/16686963 http://dx.doi.org/10.1186/gb-2006-7-5-r36 Text en Copyright ©2006 Bonneau et al.; licensee BioMed Central Ltd http://creativecommons.org/licenses/by/2.0 This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Method
Bonneau, Richard
Reiss, David J
Shannon, Paul
Facciotti, Marc
Hood, Leroy
Baliga, Nitin S
Thorsson, Vesteinn
The Inferelator: an algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo
title The Inferelator: an algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo
title_full The Inferelator: an algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo
title_fullStr The Inferelator: an algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo
title_full_unstemmed The Inferelator: an algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo
title_short The Inferelator: an algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo
title_sort inferelator: an algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo
topic Method
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1779511/
https://www.ncbi.nlm.nih.gov/pubmed/16686963
http://dx.doi.org/10.1186/gb-2006-7-5-r36
work_keys_str_mv AT bonneaurichard theinferelatoranalgorithmforlearningparsimoniousregulatorynetworksfromsystemsbiologydatasetsdenovo
AT reissdavidj theinferelatoranalgorithmforlearningparsimoniousregulatorynetworksfromsystemsbiologydatasetsdenovo
AT shannonpaul theinferelatoranalgorithmforlearningparsimoniousregulatorynetworksfromsystemsbiologydatasetsdenovo
AT facciottimarc theinferelatoranalgorithmforlearningparsimoniousregulatorynetworksfromsystemsbiologydatasetsdenovo
AT hoodleroy theinferelatoranalgorithmforlearningparsimoniousregulatorynetworksfromsystemsbiologydatasetsdenovo
AT baliganitins theinferelatoranalgorithmforlearningparsimoniousregulatorynetworksfromsystemsbiologydatasetsdenovo
AT thorssonvesteinn theinferelatoranalgorithmforlearningparsimoniousregulatorynetworksfromsystemsbiologydatasetsdenovo
AT bonneaurichard inferelatoranalgorithmforlearningparsimoniousregulatorynetworksfromsystemsbiologydatasetsdenovo
AT reissdavidj inferelatoranalgorithmforlearningparsimoniousregulatorynetworksfromsystemsbiologydatasetsdenovo
AT shannonpaul inferelatoranalgorithmforlearningparsimoniousregulatorynetworksfromsystemsbiologydatasetsdenovo
AT facciottimarc inferelatoranalgorithmforlearningparsimoniousregulatorynetworksfromsystemsbiologydatasetsdenovo
AT hoodleroy inferelatoranalgorithmforlearningparsimoniousregulatorynetworksfromsystemsbiologydatasetsdenovo
AT baliganitins inferelatoranalgorithmforlearningparsimoniousregulatorynetworksfromsystemsbiologydatasetsdenovo
AT thorssonvesteinn inferelatoranalgorithmforlearningparsimoniousregulatorynetworksfromsystemsbiologydatasetsdenovo