Cargando…
The Inferelator: an algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo
We present a method (the Inferelator) for deriving genome-wide transcriptional regulatory interactions, and apply the method to predict a large portion of the regulatory network of the archaeon Halobacterium NRC-1. The Inferelator uses regression and variable selection to identify transcriptional in...
Autores principales: | Bonneau, Richard, Reiss, David J, Shannon, Paul, Facciotti, Marc, Hood, Leroy, Baliga, Nitin S, Thorsson, Vesteinn |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2006
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1779511/ https://www.ncbi.nlm.nih.gov/pubmed/16686963 http://dx.doi.org/10.1186/gb-2006-7-5-r36 |
Ejemplares similares
-
Comprehensive de novo structure prediction in a systems-biology context for the archaea Halobacterium sp. NRC-1
por: Bonneau, Richard, et al.
Publicado: (2004) -
Regulostat Inferelator: a novel network biology platform to uncover molecular devices that predetermine cellular response phenotypes
por: Ung, Choong Yong, et al.
Publicado: (2019) -
DREAM3: Network Inference Using Dynamic Context Likelihood of Relatedness and the Inferelator
por: Madar, Aviv, et al.
Publicado: (2010) -
High-performance single-cell gene regulatory network inference at scale: the Inferelator 3.0
por: Skok Gibbs, Claudia, et al.
Publicado: (2022) -
Integrated biclustering of heterogeneous genome-wide datasets for the inference of global regulatory networks
por: Reiss, David J, et al.
Publicado: (2006)