Cargando…
A strategy for extracting and analyzing large-scale quantitative epistatic interaction data
Recently, approaches have been developed for high-throughput identification of synthetic sick/lethal gene pairs. However, these are only a specific example of the broader phenomenon of epistasis, wherein the presence of one mutation modulates the phenotype of another. We present analysis techniques...
Autores principales: | , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2006
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1779568/ https://www.ncbi.nlm.nih.gov/pubmed/16859555 http://dx.doi.org/10.1186/gb-2006-7-7-r63 |
Sumario: | Recently, approaches have been developed for high-throughput identification of synthetic sick/lethal gene pairs. However, these are only a specific example of the broader phenomenon of epistasis, wherein the presence of one mutation modulates the phenotype of another. We present analysis techniques for generating high-confidence quantitative epistasis scores from measurements made using synthetic genetic array and epistatic miniarray profile (E-MAP) technology, as well as several tools for higher-level analysis of the resulting data that are greatly enhanced by the quantitative score and detection of alleviating interactions. |
---|