Cargando…
Apical Localization of Sodium-Dependent Glucose Transporter SGLT1 is Maintained by Cholesterol and Microtubules
A GFP-labeled sodium-dependent glucose transporter SGLT1 (SGLT-GFP) was transfected into MDCK cells. SGLT-GFP was localized at the apical membrane in confluent cells. When cellular cholesterol was depleted by methyl-β-cyclodextrin (MβCD) treatment, the localization of SGLT-GFP gradually switched fro...
Autores principales: | , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Japan Society of Histochemistry and Cytochemistry
2006
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1779948/ https://www.ncbi.nlm.nih.gov/pubmed/17327902 http://dx.doi.org/10.1267/ahc.06024 |
Sumario: | A GFP-labeled sodium-dependent glucose transporter SGLT1 (SGLT-GFP) was transfected into MDCK cells. SGLT-GFP was localized at the apical membrane in confluent cells. When cellular cholesterol was depleted by methyl-β-cyclodextrin (MβCD) treatment, the localization of SGLT-GFP gradually switched from apical to whole plasma membrane. Time-lapse microscopy revealed that the effect of MβCD appeared within 30 min, and that the transition of SGLT-GFP to the whole plasma membrane was completed within 2 hr after the administration. Immunofluorescence microscopy revealed that the tight junction framework remained steady during this process. The effect of MβCD on SGLT-GFP localization was counterbalanced by the addition of cholesterol into the culture medium. Disruption of microtubules by colcemid also perturbed SGLT-GFP localization. SGLT-GFP localized to the whole plasma membrane by colcemid treatment, and apical localization was restored within 1 hr after removal of colcemid. Inhibition of protein synthesis by cycloheximide had no effect on the transition of SGLT-GFP induced by the MβCD or colcemid. These results indicated that the apical localization of SGLT-GFP is maintained by cellular cholesterol and microtubules, possibly with an apical recycling machinery. |
---|