Cargando…
Clustering of gene expression data: performance and similarity analysis
BACKGROUND: DNA Microarray technology is an innovative methodology in experimental molecular biology, which has produced huge amounts of valuable data in the profile of gene expression. Many clustering algorithms have been proposed to analyze gene expression data, but little guidance is available to...
Autores principales: | Yin, Longde, Huang, Chun-Hsi, Ni, Jun |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2006
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1780119/ https://www.ncbi.nlm.nih.gov/pubmed/17217511 http://dx.doi.org/10.1186/1471-2105-7-S4-S19 |
Ejemplares similares
-
Clustering of Gene Expression Data Based on Shape Similarity
por: Hestilow, Travis J, et al.
Publicado: (2009) -
Association Rule Based Similarity Measures for the Clustering of Gene Expression Data
por: Sethi, Prerna, et al.
Publicado: (2010) -
Band-based similarity indices for gene expression classification and clustering
por: Torrente, Aurora
Publicado: (2021) -
MOTIFSIM 2.1: An Enhanced Software Platform for Detecting Similarity in Multiple DNA Motif Data Sets
por: Tran, Ngoc Tam L., et al.
Publicado: (2017) -
Efficient similarity-based data clustering by optimal object to cluster reallocation
por: Rossignol, Mathias, et al.
Publicado: (2018)