Cargando…
Evaluation of clustering algorithms for gene expression data
BACKGROUND: Cluster analysis is an integral part of high dimensional data analysis. In the context of large scale gene expression data, a filtered set of genes are grouped together according to their expression profiles using one of numerous clustering algorithms that exist in the statistics and mac...
Autores principales: | Datta, Susmita, Datta, Somnath |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2006
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1780133/ https://www.ncbi.nlm.nih.gov/pubmed/17217509 http://dx.doi.org/10.1186/1471-2105-7-S4-S17 |
Ejemplares similares
-
Methods for evaluating clustering algorithms for gene expression data using a reference set of functional classes
por: Datta, Susmita, et al.
Publicado: (2006) -
optCluster: An R Package for Determining the Optimal Clustering Algorithm
por: Sekula, Michael, et al.
Publicado: (2017) -
Inter-platform concordance of gene expression data for the prediction of chemical mode of action
por: Siriwardhana, Chathura, et al.
Publicado: (2016) -
Incorporation of biological knowledge into distance for clustering genes
por: Boratyn, Grzegorz M, et al.
Publicado: (2007) -
Meta analysis of Chronic Fatigue Syndrome through integration of clinical, gene expression, SNP and proteomic data
por: Pihur, Vasyl, et al.
Publicado: (2011)