Cargando…

Acute-phase serum amyloid A production by rheumatoid arthritis synovial tissue

INTRODUCTION: Serum amyloid A (SAA) is the circulating precursor of amyloid A protein, the fibrillar component of amyloid deposits. In humans, four SAA genes have been described. Two genes (SAA1 and SAA2) encode A-SAA and are coordinately induced in response to inflammation. SAA1 and SAA2 are 95% ho...

Descripción completa

Detalles Bibliográficos
Autores principales: O'Hara, Rosemary, Murphy, Evelyn P, Whitehead, Alexander S, FitzGerald, Oliver, Bresnihan, Barry
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2000
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC17807/
https://www.ncbi.nlm.nih.gov/pubmed/11062604
_version_ 1782119931718926336
author O'Hara, Rosemary
Murphy, Evelyn P
Whitehead, Alexander S
FitzGerald, Oliver
Bresnihan, Barry
author_facet O'Hara, Rosemary
Murphy, Evelyn P
Whitehead, Alexander S
FitzGerald, Oliver
Bresnihan, Barry
author_sort O'Hara, Rosemary
collection PubMed
description INTRODUCTION: Serum amyloid A (SAA) is the circulating precursor of amyloid A protein, the fibrillar component of amyloid deposits. In humans, four SAA genes have been described. Two genes (SAA1 and SAA2) encode A-SAA and are coordinately induced in response to inflammation. SAA1 and SAA2 are 95% homologous in both coding and noncoding regions. SAA3 is a pseudogene. SAA4 encodes constitutive SAA and is minimally inducible. A-SAA increases dramatically during acute inflammation and may reach levels that are 1000-fold greater than normal. A-SAA is mainly synthesized in the liver, but extrahepatic production has been demonstrated in many species, including humans. A-SAA mRNA is expressed in RA synoviocytes and in monocyte/macrophage cell lines such as THP-1 cells, in endothelial cells and in smooth muscle cells of atherosclerotic lesions. A-SAA has also been localized to a wide range of histologically normal tissues, including breast, stomach, intestine, pancreas, kidney, lung, tonsil, thyroid, pituitary, placenta, skin and brain. AIMS: To identify the cell types that produce A-SAA mRNA and protein, and their location in RA synovium. MATERIALS AND METHODS: Rheumatoid synovial tissue was obtained from eight patients undergoing arthroscopic biopsy and at joint replacement surgery. Total RNA was analyzed by reverse transcription (RT) polymerase chain reaction (PCR) for A-SAA mRNA. PCR products generated were confirmed by Southern blot analysis using human A-SAA cDNA. Localization of A-SAA production was examined by immunohistochemistry using a rabbit antihuman A-SAA polyclonal antibody. PrimaryRA synoviocytes were cultured to examine endogenous A-SAA mRNA expression and protein production. RESULTS: A-SAA mRNA expression was detected using RT-PCR in all eight synovial tissue samples studied. Figure 1 demonstrates RT-PCR products generated using synovial tissue from three representative RA patients. Analysis of RA synovial tissue revealed differences in A-SAA mRNA levels between individual RA patients. In order to identify the cells that expressed A-SAA mRNA in RA synovial tissue, we analyzed primary human synoviocytes (n = 2). RT-PCR analysis revealed A-SAA mRNA expression in primary RA synoviocytes (n = 2; Fig. 2). The endogenous A-SAA mRNA levels detected in individual primary RA synoviocytes varied between patients. These findings are consistent with A-SAA expression in RA synovial tissue (Fig. 1). Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) levels were relatively similar in the RA synoviocytes examined (Fig. 2). A-SAA protein in the supernatants of primary synoviocyte cultures from four RA patients was measured using ELISA. Mean values of a control and four RA samples were 77.85, 162.5, 249.8, 321.5 and 339.04 μg/l A-SAA, respectively, confirming the production of A-SAA protein by the primary RA synoviocytes. Immunohistochemical analysis was performed to localize sites of A-SAA production in RA synovial tissue. Positive staining was present in both the lining and sublining layers of all eight RA tissues examined (Fig. 3a). Staining was intense and most prominent in the cells closest to the surface of the synovial lining layer. Positively stained cells were evident in the perivascular areas of the sublining layer. In serial sections stained with anti-CD68 monoclonal antibody, positive staining of macrophages appeared to colocalize with A-SAA-positive cells (Fig. 3b). Immunohistochemical studies of cultured primary RA synoviocytes confirmed specific cytoplasmic A-SAA expression in these cells. The specificity of the staining was confirmed by the absence of staining found on serial sections and synoviocyte cells treated with IgG (Fig. 3c). DISCUSSION: This study demonstrates that A-SAA mRNA is expressed in several cell populations infiltrating RA synovial tissue. A-SAA mRNA expression was observed in all eight unseparated RA tissue samples studied. A-SAA mRNA expression and protein production was demonstrated in primary cultures of purified RA synoviocytes. Using immunohistochemical techniques, A-SAA protein appeared to colocalize with both lining layer and sublining layer synoviocytes, macrophages and some endothelial cells. The detection of A-SAA protein in culture media supernatants harvested from unstimulated synoviocytes confirms endogenous A-SAA production, and is consistent with A-SAA mRNA expression and translation by the same cells. Moreover, the demonstration of A-SAA protein in RA synovial tissue, RA cultured synoviocytes, macrophages and endothelial cells is consistent with previous studies that demonstrated A-SAA production by a variety of human cell populations. The RA synovial lining layer is composed of activated macrophages and fibroblast-like synoviocytes. The macrophage is the predominant cell type and it has been shown to accumulate preferentially in the surface of the lining layer and in the perivascular areas of the sublining layer. Nevertheless, our observations strongly suggest that A-SAA is produced not only by synoviocytes, but also by synovial tissue macrophage populations. Local A-SAA protein production by vascular endothelial cells was detected in some, but not all, of the tissues examined. The reason for the variability in vascular A-SAA staining is unknown, but may be due to differences in endothelial cell activation, events related to angiogenesis or the intensity of local inflammation. The value of measuring serum A-SAA levels as a reliable surrogate marker of inflammation has been demonstrated for several diseases including RA, juvenile chronic arthritis, psoriatic arthropathy, ankylosing spondylitis, Behçet's disease, reactive arthritis and Crohn's disease. It has been suggested that serum A-SAA levels may represent the most sensitive measurement of the acute-phase reaction. In RA, A-SAA levels provide the strongest correlations with clinical measurements of disease activity, and changes in serum levels best reflect the clinical course. A number of biologic activities have been described for A-SAA, including several that are relevant to the understanding of inflammatory and tissue-degrading mechanisms in human arthritis. A-SAA induces migration, adhesion and tissue infiltration of circulating monocytes and polymorphonuclear leukocytes. In addition, human A-SAA can induce interleukin-1β, interleukin-1 receptor antagonist and soluble type II tumour necrosis factor receptor production by a monocyte cell line. Moreover, A-SAA can stimulate the production of cartilage-degrading proteases by both human and rabbit synoviocytes. The effects of A-SAA on protease production are interesting, because in RA a sustained acute-phase reaction has been strongly associated with progressive joint damage. The known association between the acute-phase response and progressive joint damage may be the direct result of synovial A-SAA-induced effects on cartilage degradation. CONCLUSION: In contrast to noninflamed synovium, A-SAA mRNA expression was identified in all RA tissues examined. A-SAA appeared to be produced by synovial tissue synoviocytes, macrophages and endothelial cells. The observation of A-SAA mRNA expression in cultured RA synoviocytes and human RA synovial tissue confirms and extends recently published findings that demonstrated A-SAA mRNA expression in stimulated RA synoviocytes, but not in unstimulated RA synoviocytes.
format Text
id pubmed-17807
institution National Center for Biotechnology Information
language English
publishDate 2000
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-178072001-03-08 Acute-phase serum amyloid A production by rheumatoid arthritis synovial tissue O'Hara, Rosemary Murphy, Evelyn P Whitehead, Alexander S FitzGerald, Oliver Bresnihan, Barry Arthritis Res Primary Research INTRODUCTION: Serum amyloid A (SAA) is the circulating precursor of amyloid A protein, the fibrillar component of amyloid deposits. In humans, four SAA genes have been described. Two genes (SAA1 and SAA2) encode A-SAA and are coordinately induced in response to inflammation. SAA1 and SAA2 are 95% homologous in both coding and noncoding regions. SAA3 is a pseudogene. SAA4 encodes constitutive SAA and is minimally inducible. A-SAA increases dramatically during acute inflammation and may reach levels that are 1000-fold greater than normal. A-SAA is mainly synthesized in the liver, but extrahepatic production has been demonstrated in many species, including humans. A-SAA mRNA is expressed in RA synoviocytes and in monocyte/macrophage cell lines such as THP-1 cells, in endothelial cells and in smooth muscle cells of atherosclerotic lesions. A-SAA has also been localized to a wide range of histologically normal tissues, including breast, stomach, intestine, pancreas, kidney, lung, tonsil, thyroid, pituitary, placenta, skin and brain. AIMS: To identify the cell types that produce A-SAA mRNA and protein, and their location in RA synovium. MATERIALS AND METHODS: Rheumatoid synovial tissue was obtained from eight patients undergoing arthroscopic biopsy and at joint replacement surgery. Total RNA was analyzed by reverse transcription (RT) polymerase chain reaction (PCR) for A-SAA mRNA. PCR products generated were confirmed by Southern blot analysis using human A-SAA cDNA. Localization of A-SAA production was examined by immunohistochemistry using a rabbit antihuman A-SAA polyclonal antibody. PrimaryRA synoviocytes were cultured to examine endogenous A-SAA mRNA expression and protein production. RESULTS: A-SAA mRNA expression was detected using RT-PCR in all eight synovial tissue samples studied. Figure 1 demonstrates RT-PCR products generated using synovial tissue from three representative RA patients. Analysis of RA synovial tissue revealed differences in A-SAA mRNA levels between individual RA patients. In order to identify the cells that expressed A-SAA mRNA in RA synovial tissue, we analyzed primary human synoviocytes (n = 2). RT-PCR analysis revealed A-SAA mRNA expression in primary RA synoviocytes (n = 2; Fig. 2). The endogenous A-SAA mRNA levels detected in individual primary RA synoviocytes varied between patients. These findings are consistent with A-SAA expression in RA synovial tissue (Fig. 1). Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) levels were relatively similar in the RA synoviocytes examined (Fig. 2). A-SAA protein in the supernatants of primary synoviocyte cultures from four RA patients was measured using ELISA. Mean values of a control and four RA samples were 77.85, 162.5, 249.8, 321.5 and 339.04 μg/l A-SAA, respectively, confirming the production of A-SAA protein by the primary RA synoviocytes. Immunohistochemical analysis was performed to localize sites of A-SAA production in RA synovial tissue. Positive staining was present in both the lining and sublining layers of all eight RA tissues examined (Fig. 3a). Staining was intense and most prominent in the cells closest to the surface of the synovial lining layer. Positively stained cells were evident in the perivascular areas of the sublining layer. In serial sections stained with anti-CD68 monoclonal antibody, positive staining of macrophages appeared to colocalize with A-SAA-positive cells (Fig. 3b). Immunohistochemical studies of cultured primary RA synoviocytes confirmed specific cytoplasmic A-SAA expression in these cells. The specificity of the staining was confirmed by the absence of staining found on serial sections and synoviocyte cells treated with IgG (Fig. 3c). DISCUSSION: This study demonstrates that A-SAA mRNA is expressed in several cell populations infiltrating RA synovial tissue. A-SAA mRNA expression was observed in all eight unseparated RA tissue samples studied. A-SAA mRNA expression and protein production was demonstrated in primary cultures of purified RA synoviocytes. Using immunohistochemical techniques, A-SAA protein appeared to colocalize with both lining layer and sublining layer synoviocytes, macrophages and some endothelial cells. The detection of A-SAA protein in culture media supernatants harvested from unstimulated synoviocytes confirms endogenous A-SAA production, and is consistent with A-SAA mRNA expression and translation by the same cells. Moreover, the demonstration of A-SAA protein in RA synovial tissue, RA cultured synoviocytes, macrophages and endothelial cells is consistent with previous studies that demonstrated A-SAA production by a variety of human cell populations. The RA synovial lining layer is composed of activated macrophages and fibroblast-like synoviocytes. The macrophage is the predominant cell type and it has been shown to accumulate preferentially in the surface of the lining layer and in the perivascular areas of the sublining layer. Nevertheless, our observations strongly suggest that A-SAA is produced not only by synoviocytes, but also by synovial tissue macrophage populations. Local A-SAA protein production by vascular endothelial cells was detected in some, but not all, of the tissues examined. The reason for the variability in vascular A-SAA staining is unknown, but may be due to differences in endothelial cell activation, events related to angiogenesis or the intensity of local inflammation. The value of measuring serum A-SAA levels as a reliable surrogate marker of inflammation has been demonstrated for several diseases including RA, juvenile chronic arthritis, psoriatic arthropathy, ankylosing spondylitis, Behçet's disease, reactive arthritis and Crohn's disease. It has been suggested that serum A-SAA levels may represent the most sensitive measurement of the acute-phase reaction. In RA, A-SAA levels provide the strongest correlations with clinical measurements of disease activity, and changes in serum levels best reflect the clinical course. A number of biologic activities have been described for A-SAA, including several that are relevant to the understanding of inflammatory and tissue-degrading mechanisms in human arthritis. A-SAA induces migration, adhesion and tissue infiltration of circulating monocytes and polymorphonuclear leukocytes. In addition, human A-SAA can induce interleukin-1β, interleukin-1 receptor antagonist and soluble type II tumour necrosis factor receptor production by a monocyte cell line. Moreover, A-SAA can stimulate the production of cartilage-degrading proteases by both human and rabbit synoviocytes. The effects of A-SAA on protease production are interesting, because in RA a sustained acute-phase reaction has been strongly associated with progressive joint damage. The known association between the acute-phase response and progressive joint damage may be the direct result of synovial A-SAA-induced effects on cartilage degradation. CONCLUSION: In contrast to noninflamed synovium, A-SAA mRNA expression was identified in all RA tissues examined. A-SAA appeared to be produced by synovial tissue synoviocytes, macrophages and endothelial cells. The observation of A-SAA mRNA expression in cultured RA synoviocytes and human RA synovial tissue confirms and extends recently published findings that demonstrated A-SAA mRNA expression in stimulated RA synoviocytes, but not in unstimulated RA synoviocytes. BioMed Central 2000 2000-02-24 /pmc/articles/PMC17807/ /pubmed/11062604 Text en Copyright © 2000 Current Science Ltd
spellingShingle Primary Research
O'Hara, Rosemary
Murphy, Evelyn P
Whitehead, Alexander S
FitzGerald, Oliver
Bresnihan, Barry
Acute-phase serum amyloid A production by rheumatoid arthritis synovial tissue
title Acute-phase serum amyloid A production by rheumatoid arthritis synovial tissue
title_full Acute-phase serum amyloid A production by rheumatoid arthritis synovial tissue
title_fullStr Acute-phase serum amyloid A production by rheumatoid arthritis synovial tissue
title_full_unstemmed Acute-phase serum amyloid A production by rheumatoid arthritis synovial tissue
title_short Acute-phase serum amyloid A production by rheumatoid arthritis synovial tissue
title_sort acute-phase serum amyloid a production by rheumatoid arthritis synovial tissue
topic Primary Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC17807/
https://www.ncbi.nlm.nih.gov/pubmed/11062604
work_keys_str_mv AT ohararosemary acutephaseserumamyloidaproductionbyrheumatoidarthritissynovialtissue
AT murphyevelynp acutephaseserumamyloidaproductionbyrheumatoidarthritissynovialtissue
AT whiteheadalexanders acutephaseserumamyloidaproductionbyrheumatoidarthritissynovialtissue
AT fitzgeraldoliver acutephaseserumamyloidaproductionbyrheumatoidarthritissynovialtissue
AT bresnihanbarry acutephaseserumamyloidaproductionbyrheumatoidarthritissynovialtissue