Cargando…

Exhaled nitric oxide in mylar balloons: influence of storage time, humidity and temperature.

BACKGROUND: Mylar balloons are used to collect exhaled air for analysis of fractional nitric oxide concentration (FENO). AIM: We studied the effect of storage conditions on the stability of nitric oxide (NO) in mylar balloons. METHODS: Exhaled air samples and calibration gases were stored in mylar b...

Descripción completa

Detalles Bibliográficos
Autores principales: Bodini, Alessandro, Pijnenburg, Mariëlle W H, Boner, Atillio L, de Jongste, Johan C
Formato: Texto
Lenguaje:English
Publicado: 2003
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1781591/
https://www.ncbi.nlm.nih.gov/pubmed/12745548
http://dx.doi.org/10.1080/0962935031000096971
Descripción
Sumario:BACKGROUND: Mylar balloons are used to collect exhaled air for analysis of fractional nitric oxide concentration (FENO). AIM: We studied the effect of storage conditions on the stability of nitric oxide (NO) in mylar balloons. METHODS: Exhaled air samples and calibration gases were stored in mylar balloons at 4, 21 and 37 degrees C, with or without silica gel. NO was measured after 0, 6, 9, 24 and 48 h. Scheffe F-tests were used to compare NO values. RESULTS: NO remained stable in balloons for 9 h at all temperatures, without silica gel. NO increased between 9 and 48 h, but only with low initial FENO. Silica gel increased variability. CONCLUSIONS: FENO in mylar balloons is stable for at least 9 h. The storage temperature is not critical, but silica gel increases variability.