Cargando…
Differential regulation of C-C chemokines during fibroblast-monocyte interactions: adhesion vs. inflammatory cytokine pathways.
The cell-to-cell interactions during chronic inflammatory diseases likely contribute to leukocyte accumulation leading to increased pathology and organ dysfunction. In particular, there is a paucity of information relating to the maintenance of chronic fibrotic diseases. Using a lung fibroblast line...
Autores principales: | , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
1998
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1781852/ https://www.ncbi.nlm.nih.gov/pubmed/9792337 |
Sumario: | The cell-to-cell interactions during chronic inflammatory diseases likely contribute to leukocyte accumulation leading to increased pathology and organ dysfunction. In particular, there is a paucity of information relating to the maintenance of chronic fibrotic diseases. Using a lung fibroblast line and enriched monocyte populations, we have investigated the activational events which contribute to the production of two C-C chemokines, macrophage inflammatory protein-1 alpha (MIP-1alpha) and monocyte chemoattractant protein-1 (MCP-1), during fibroblast-monocyte interactions. Neither the fibroblast cell line (16lu) nor isolated monocytes alone produced significant levels of MIP-1alpha or MCP-1. However, when isolated monocytes were layered onto 16 lu fibroblast monolayers a significant increase in MIP-1alpha and MCP-1 production was observed. The use of fixed cell populations indicated that the MIP-1alpha was derived from monocytes and MCP-1 from both cell populations. To examine the molecules which were required for chemokine production during the interaction, specific antibodies were used in the co-cultures. Blocking beta3-integrin interactions significantly inhibited MIP-1alpha production. In contrast, beta-integrin interactions had no effect on the MCP-1 production, while, neutralization of TNF significantly decreased MCP-1 production during the co-culture. These data indicate that fibroblast-monocyte interactions induce chemokine production through different mechanisms and a combination of these responses may contribute to the maintenance of the mononuclear cell accumulation during disease progression. |
---|