Cargando…
Studies on the biological effects of ozone: 8. Effects on the total antioxidant status and on interleukin-8 production.
Ozone (O3) is a controversial gas because, owing to its potent oxidant properties, it exerts damaging effects on the respiratory tract and yet it has been used for four decades as a therapy. While the disinfectant activity of O3 is understandable, it is less clear how other biological effects can be...
Autores principales: | , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
1998
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1781866/ https://www.ncbi.nlm.nih.gov/pubmed/9883965 |
_version_ | 1782131994908426240 |
---|---|
author | Bocci, V Valacchi, G Corradeschi, F Fanetti, G |
author_facet | Bocci, V Valacchi, G Corradeschi, F Fanetti, G |
author_sort | Bocci, V |
collection | PubMed |
description | Ozone (O3) is a controversial gas because, owing to its potent oxidant properties, it exerts damaging effects on the respiratory tract and yet it has been used for four decades as a therapy. While the disinfectant activity of O3 is understandable, it is less clear how other biological effects can be elicited in human blood with practically no toxicity. On the other hand plasma and cells are endowed with a powerful antioxidant system so that a fairly wide range of O3 concentrations between 40 and 80 microg/ml per gram of blood (approximately 0.83-1.66 mM) are effective but not deleterious. After blood ozonation total antioxidant status (TAS) and plasma protein thiol groups (PTG) decrease by 20% and 25%, respectively, while thiobarbituric acid reactive substances (TBARS) increases up to five-fold. The increase of haemolysis is negligible suggesting that the erythrocyte membrane is spared at the expense of other sacrificial substrates. While there is a clear relationship between the ozone dose and IL-8 levels, we have noticed that high TAS and PTG values inhibit the cytokine production. This is in line with the current idea that hydrogen peroxide, as a byproduct of O3 decomposition, acts as a messenger for the cytokine induction. |
format | Text |
id | pubmed-1781866 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 1998 |
record_format | MEDLINE/PubMed |
spelling | pubmed-17818662007-01-25 Studies on the biological effects of ozone: 8. Effects on the total antioxidant status and on interleukin-8 production. Bocci, V Valacchi, G Corradeschi, F Fanetti, G Mediators Inflamm Research Article Ozone (O3) is a controversial gas because, owing to its potent oxidant properties, it exerts damaging effects on the respiratory tract and yet it has been used for four decades as a therapy. While the disinfectant activity of O3 is understandable, it is less clear how other biological effects can be elicited in human blood with practically no toxicity. On the other hand plasma and cells are endowed with a powerful antioxidant system so that a fairly wide range of O3 concentrations between 40 and 80 microg/ml per gram of blood (approximately 0.83-1.66 mM) are effective but not deleterious. After blood ozonation total antioxidant status (TAS) and plasma protein thiol groups (PTG) decrease by 20% and 25%, respectively, while thiobarbituric acid reactive substances (TBARS) increases up to five-fold. The increase of haemolysis is negligible suggesting that the erythrocyte membrane is spared at the expense of other sacrificial substrates. While there is a clear relationship between the ozone dose and IL-8 levels, we have noticed that high TAS and PTG values inhibit the cytokine production. This is in line with the current idea that hydrogen peroxide, as a byproduct of O3 decomposition, acts as a messenger for the cytokine induction. 1998 /pmc/articles/PMC1781866/ /pubmed/9883965 Text en |
spellingShingle | Research Article Bocci, V Valacchi, G Corradeschi, F Fanetti, G Studies on the biological effects of ozone: 8. Effects on the total antioxidant status and on interleukin-8 production. |
title | Studies on the biological effects of ozone: 8. Effects on the total antioxidant status and on interleukin-8 production. |
title_full | Studies on the biological effects of ozone: 8. Effects on the total antioxidant status and on interleukin-8 production. |
title_fullStr | Studies on the biological effects of ozone: 8. Effects on the total antioxidant status and on interleukin-8 production. |
title_full_unstemmed | Studies on the biological effects of ozone: 8. Effects on the total antioxidant status and on interleukin-8 production. |
title_short | Studies on the biological effects of ozone: 8. Effects on the total antioxidant status and on interleukin-8 production. |
title_sort | studies on the biological effects of ozone: 8. effects on the total antioxidant status and on interleukin-8 production. |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1781866/ https://www.ncbi.nlm.nih.gov/pubmed/9883965 |
work_keys_str_mv | AT bocciv studiesonthebiologicaleffectsofozone8effectsonthetotalantioxidantstatusandoninterleukin8production AT valacchig studiesonthebiologicaleffectsofozone8effectsonthetotalantioxidantstatusandoninterleukin8production AT corradeschif studiesonthebiologicaleffectsofozone8effectsonthetotalantioxidantstatusandoninterleukin8production AT fanettig studiesonthebiologicaleffectsofozone8effectsonthetotalantioxidantstatusandoninterleukin8production |