Cargando…

Recombinant Escherichia coli produces tailor-made biopolyester granules for applications in fluorescence activated cell sorting: functional display of the mouse interleukin-2 and myelin oligodendrocyte glycoprotein

BACKGROUND: Fluorescence activated cell sorting (FACS) is a powerful technique for the qualitative and quantitative detection of biomolecules used widely in both basic research and clinical diagnostic applications. Beads displaying a specific antigen are used to bind antibodies which are then fluore...

Descripción completa

Detalles Bibliográficos
Autores principales: Bäckström, B Thomas, Brockelbank, Jane A, Rehm, Bernd HA
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2007
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1781935/
https://www.ncbi.nlm.nih.gov/pubmed/17204164
http://dx.doi.org/10.1186/1472-6750-7-3
_version_ 1782131999042961408
author Bäckström, B Thomas
Brockelbank, Jane A
Rehm, Bernd HA
author_facet Bäckström, B Thomas
Brockelbank, Jane A
Rehm, Bernd HA
author_sort Bäckström, B Thomas
collection PubMed
description BACKGROUND: Fluorescence activated cell sorting (FACS) is a powerful technique for the qualitative and quantitative detection of biomolecules used widely in both basic research and clinical diagnostic applications. Beads displaying a specific antigen are used to bind antibodies which are then fluorescently labelled using secondary antibodies. As the individual suspension bead passes through the sensing region of the FACS machine, fluorescent signals are acquired and analysed. Currently, antigens are tediously purified and chemically cross-linked to preformed beads. Purification and coupling of proteins often renders them inactive and they will not be displayed in its native configuration. As an alternative, we genetically engineered Escherichia coli to produce biopolyester (polyhdroxyalkanoate=PHA) granules displaying diagnostically relevant antigens in their native conformation and suitable for FACS analysis. RESULTS: Hybrid genes were constructed, which encode either the mouse interleukin-2 (IL2) or the myelin oligodendrocyte glycoprotein (MOG) fused via an enterokinase site providing linker region to the C terminus of the PHA granule associated protein PhaP, respectively. The hybrid genes were expressed in PHA-accumulating recombinant E. coli. MOG and IL2 fusion proteins were abundantly attached to PHA granules and were identified by MALDI-TOF/MS analysis and N terminal sequencing. A more abundant second fusion protein of either MOG or IL2 resulted from an additional N terminal fusion, which did surprisingly not interfere with attachment to PHA granule. PHA granules displaying either IL2 or MOG were used for FACS using monoclonal anti-IL2 or anti-MOG antibodies conjugated to a fluorescent dye. FACS analysis showed significant and specific binding of respective antibodies. Enterokinase treatment of IL2 displaying PHA granules enabled removal of IL2 as monitored by FACS analysis. Mice were immunized with either MOG or OVA (ovalbumin) and the respective sera were analysed using MOG-displaying PHA granules and FACS analysis showing a specific and sensitive detection of antigen-specific antibodies within a wide dynamic range. CONCLUSION: E. coli can be genetically engineered to produce PHA granules displaying correctly folded eukaryotic proteins and which can be applied as beads in FACS based diagnostics. Since PHA granule formation and protein attachment occurs in one step already inside the bacterial cell, microbial production could be a cheap and efficient alternative to commercial beads.
format Text
id pubmed-1781935
institution National Center for Biotechnology Information
language English
publishDate 2007
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-17819352007-01-26 Recombinant Escherichia coli produces tailor-made biopolyester granules for applications in fluorescence activated cell sorting: functional display of the mouse interleukin-2 and myelin oligodendrocyte glycoprotein Bäckström, B Thomas Brockelbank, Jane A Rehm, Bernd HA BMC Biotechnol Research Article BACKGROUND: Fluorescence activated cell sorting (FACS) is a powerful technique for the qualitative and quantitative detection of biomolecules used widely in both basic research and clinical diagnostic applications. Beads displaying a specific antigen are used to bind antibodies which are then fluorescently labelled using secondary antibodies. As the individual suspension bead passes through the sensing region of the FACS machine, fluorescent signals are acquired and analysed. Currently, antigens are tediously purified and chemically cross-linked to preformed beads. Purification and coupling of proteins often renders them inactive and they will not be displayed in its native configuration. As an alternative, we genetically engineered Escherichia coli to produce biopolyester (polyhdroxyalkanoate=PHA) granules displaying diagnostically relevant antigens in their native conformation and suitable for FACS analysis. RESULTS: Hybrid genes were constructed, which encode either the mouse interleukin-2 (IL2) or the myelin oligodendrocyte glycoprotein (MOG) fused via an enterokinase site providing linker region to the C terminus of the PHA granule associated protein PhaP, respectively. The hybrid genes were expressed in PHA-accumulating recombinant E. coli. MOG and IL2 fusion proteins were abundantly attached to PHA granules and were identified by MALDI-TOF/MS analysis and N terminal sequencing. A more abundant second fusion protein of either MOG or IL2 resulted from an additional N terminal fusion, which did surprisingly not interfere with attachment to PHA granule. PHA granules displaying either IL2 or MOG were used for FACS using monoclonal anti-IL2 or anti-MOG antibodies conjugated to a fluorescent dye. FACS analysis showed significant and specific binding of respective antibodies. Enterokinase treatment of IL2 displaying PHA granules enabled removal of IL2 as monitored by FACS analysis. Mice were immunized with either MOG or OVA (ovalbumin) and the respective sera were analysed using MOG-displaying PHA granules and FACS analysis showing a specific and sensitive detection of antigen-specific antibodies within a wide dynamic range. CONCLUSION: E. coli can be genetically engineered to produce PHA granules displaying correctly folded eukaryotic proteins and which can be applied as beads in FACS based diagnostics. Since PHA granule formation and protein attachment occurs in one step already inside the bacterial cell, microbial production could be a cheap and efficient alternative to commercial beads. BioMed Central 2007-01-04 /pmc/articles/PMC1781935/ /pubmed/17204164 http://dx.doi.org/10.1186/1472-6750-7-3 Text en Copyright © 2007 Bäckström et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Bäckström, B Thomas
Brockelbank, Jane A
Rehm, Bernd HA
Recombinant Escherichia coli produces tailor-made biopolyester granules for applications in fluorescence activated cell sorting: functional display of the mouse interleukin-2 and myelin oligodendrocyte glycoprotein
title Recombinant Escherichia coli produces tailor-made biopolyester granules for applications in fluorescence activated cell sorting: functional display of the mouse interleukin-2 and myelin oligodendrocyte glycoprotein
title_full Recombinant Escherichia coli produces tailor-made biopolyester granules for applications in fluorescence activated cell sorting: functional display of the mouse interleukin-2 and myelin oligodendrocyte glycoprotein
title_fullStr Recombinant Escherichia coli produces tailor-made biopolyester granules for applications in fluorescence activated cell sorting: functional display of the mouse interleukin-2 and myelin oligodendrocyte glycoprotein
title_full_unstemmed Recombinant Escherichia coli produces tailor-made biopolyester granules for applications in fluorescence activated cell sorting: functional display of the mouse interleukin-2 and myelin oligodendrocyte glycoprotein
title_short Recombinant Escherichia coli produces tailor-made biopolyester granules for applications in fluorescence activated cell sorting: functional display of the mouse interleukin-2 and myelin oligodendrocyte glycoprotein
title_sort recombinant escherichia coli produces tailor-made biopolyester granules for applications in fluorescence activated cell sorting: functional display of the mouse interleukin-2 and myelin oligodendrocyte glycoprotein
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1781935/
https://www.ncbi.nlm.nih.gov/pubmed/17204164
http://dx.doi.org/10.1186/1472-6750-7-3
work_keys_str_mv AT backstrombthomas recombinantescherichiacoliproducestailormadebiopolyestergranulesforapplicationsinfluorescenceactivatedcellsortingfunctionaldisplayofthemouseinterleukin2andmyelinoligodendrocyteglycoprotein
AT brockelbankjanea recombinantescherichiacoliproducestailormadebiopolyestergranulesforapplicationsinfluorescenceactivatedcellsortingfunctionaldisplayofthemouseinterleukin2andmyelinoligodendrocyteglycoprotein
AT rehmberndha recombinantescherichiacoliproducestailormadebiopolyestergranulesforapplicationsinfluorescenceactivatedcellsortingfunctionaldisplayofthemouseinterleukin2andmyelinoligodendrocyteglycoprotein