Cargando…

Increased isoprostane and prostaglandin are prominent in neurons in Alzheimer disease

BACKGROUND: Inflammation and oxidative stress are both involved in the pathogenesis of Alzheimer disease and have been shown to be reciprocally linked. One group of molecules that have been directly associated with inflammation and the production of free radicals are the prostaglandin 13,14-dihydro...

Descripción completa

Detalles Bibliográficos
Autores principales: Casadesus, Gemma, Smith, Mark A, Basu, Samar, Hua, Jing, Capobianco, Dae E, Siedlak, Sandra L, Zhu, Xiongwei, Perry, George
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2007
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1785381/
https://www.ncbi.nlm.nih.gov/pubmed/17241462
http://dx.doi.org/10.1186/1750-1326-2-2
Descripción
Sumario:BACKGROUND: Inflammation and oxidative stress are both involved in the pathogenesis of Alzheimer disease and have been shown to be reciprocally linked. One group of molecules that have been directly associated with inflammation and the production of free radicals are the prostaglandin 13,14-dihydro 15-keto PGF(2α )and the isoprostane 8-iso-PGF(2α). RESULTS: To further delineate the role of inflammatory and oxidative parameters in Alzheimer disease, in this study we evaluated the amount and localization of 13,14-dihydro 15-keto PGF(2α )and 8-iso-PGF(2α )in hippocampal post mortem tissue samples from age-matched Alzheimer disease and control patients. Our results demonstrate increased levels of 13,14-dihydro 15-keto PGF(2α )and 8-iso-PGF(2α )in the hippocampal pyramidal neurons of Alzheimer disease patients when compared to control patients. CONCLUSION: These data not only support the shared mechanistic involvement of free radical damage and inflammation in Alzheimer disease, but also indicate that multiple pathogenic "hits" are likely necessary for both the development and propagation of Alzheimer disease.