Cargando…
Recursive gene selection based on maximum margin criterion: a comparison with SVM-RFE
BACKGROUND: In class prediction problems using microarray data, gene selection is essential to improve the prediction accuracy and to identify potential marker genes for a disease. Among numerous existing methods for gene selection, support vector machine-based recursive feature elimination (SVM-RFE...
Autores principales: | Niijima, Satoshi, Kuhara, Satoru |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2006
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1790716/ https://www.ncbi.nlm.nih.gov/pubmed/17187691 http://dx.doi.org/10.1186/1471-2105-7-543 |
Ejemplares similares
-
Improving the Performance of SVM-RFE to Select Genes in Microarray Data
por: Ding, Yuanyuan, et al.
Publicado: (2006) -
SVM-RFE Based Feature Selection and Taguchi Parameters Optimization for Multiclass SVM Classifier
por: Huang, Mei-Ling, et al.
Publicado: (2014) -
Selecting Feature Subsets Based on SVM-RFE and the Overlapping Ratio with Applications in Bioinformatics
por: Lin, Xiaohui, et al.
Publicado: (2017) -
Prediction of Drought-Resistant Genes in Arabidopsis thaliana Using SVM-RFE
por: Liang, Yanchun, et al.
Publicado: (2011) -
AdaBoost-based multiple SVM-RFE for classification of mammograms in DDSM
por: Yoon, Sejong, et al.
Publicado: (2009)