Cargando…
Maximum Likelihood Estimation of the Negative Binomial Dispersion Parameter for Highly Overdispersed Data, with Applications to Infectious Diseases
BACKGROUND: The negative binomial distribution is used commonly throughout biology as a model for overdispersed count data, with attention focused on the negative binomial dispersion parameter, k. A substantial literature exists on the estimation of k, but most attention has focused on datasets that...
Autor principal: | Lloyd-Smith, James O. |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1791715/ https://www.ncbi.nlm.nih.gov/pubmed/17299582 http://dx.doi.org/10.1371/journal.pone.0000180 |
Ejemplares similares
-
Pooling overdispersed binomial data to estimate event rate
por: Young-Xu, Yinong, et al.
Publicado: (2008) -
Negative Binomial Regression: Understanding and Modeling Overdispersed Count Data
por: Hilbe, Joseph M
Publicado: (2011) -
Negative Binomial mixed models estimated with the maximum likelihood method can be used for longitudinal RNAseq data
por: Tsonaka, Roula, et al.
Publicado: (2020) -
A comparison of observation-level random effect and Beta-Binomial models for modelling overdispersion in Binomial data in ecology & evolution
por: Harrison, Xavier A.
Publicado: (2015) -
Maximum likelihood based analysis of equally spaced longitudinal count data with first-order antedependence and overdispersion
por: Gamerman, Victoria, et al.
Publicado: (2016)