Cargando…
Inferring steady state single-cell gene expression distributions from analysis of mesoscopic samples
BACKGROUND: A great deal of interest has been generated by systems biology approaches that attempt to develop quantitative, predictive models of cellular processes. However, the starting point for all cellular gene expression, the transcription of RNA, has not been described and measured in a popula...
Autores principales: | Mar, Jessica C, Rubio, Renee, Quackenbush, John |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2006
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1794432/ https://www.ncbi.nlm.nih.gov/pubmed/17169148 http://dx.doi.org/10.1186/gb-2006-7-12-r119 |
Ejemplares similares
-
Decomposition of Gene Expression State Space Trajectories
por: Mar, Jessica C., et al.
Publicado: (2009) -
Integration of Steady-State and Temporal Gene Expression Data for the Inference of Gene Regulatory Networks
por: Wang, Yi Kan, et al.
Publicado: (2013) -
lionessR: single sample network inference in R
por: Kuijjer, Marieke L, et al.
Publicado: (2019) -
Inferring Regulatory Networks by Combining Perturbation Screens and Steady State Gene Expression Profiles
por: Shojaie, Ali, et al.
Publicado: (2014) -
Inferring gene regulation from stochastic transcriptional variation across single cells at steady state
por: Gupta, Anika, et al.
Publicado: (2022)