Cargando…

Three-dimensional morphology and gene expression in the Drosophila blastoderm at cellular resolution II: dynamics

BACKGROUND: To accurately describe gene expression and computationally model animal transcriptional networks, it is essential to determine the changing locations of cells in developing embryos. RESULTS: Using automated image analysis methods, we provide the first quantitative description of temporal...

Descripción completa

Detalles Bibliográficos
Autores principales: Keränen, Soile VE, Fowlkes, Charless C, Luengo Hendriks, Cris L, Sudar, Damir, Knowles, David W, Malik, Jitendra, Biggin, Mark D
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2006
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1794437/
https://www.ncbi.nlm.nih.gov/pubmed/17184547
http://dx.doi.org/10.1186/gb-2006-7-12-r124
Descripción
Sumario:BACKGROUND: To accurately describe gene expression and computationally model animal transcriptional networks, it is essential to determine the changing locations of cells in developing embryos. RESULTS: Using automated image analysis methods, we provide the first quantitative description of temporal changes in morphology and gene expression at cellular resolution in whole embryos, using the Drosophila blastoderm as a model. Analyses based on both fixed and live embryos reveal complex, previously undetected three-dimensional changes in nuclear density patterns caused by nuclear movements prior to gastrulation. Gene expression patterns move, in part, with these changes in morphology, but additional spatial shifts in expression patterns are also seen, supporting a previously proposed model of pattern dynamics based on the induction and inhibition of gene expression. We show that mutations that disrupt either the anterior/posterior (a/p) or the dorsal/ventral (d/v) transcriptional cascades alter morphology and gene expression along both the a/p and d/v axes in a way suggesting that these two patterning systems interact via both transcriptional and morphological mechanisms. CONCLUSION: Our work establishes a new strategy for measuring temporal changes in the locations of cells and gene expression patterns that uses fixed cell material and computational modeling. It also provides a coordinate framework for the blastoderm embryo that will allow increasingly accurate spatio-temporal modeling of both the transcriptional control network and morphogenesis.