Cargando…
Metabolic network driven analysis of genome-wide transcription data from Aspergillus nidulans
BACKGROUND: Aspergillus nidulans (the asexual form of Emericella nidulans) is a model organism for aspergilli, which are an important group of filamentous fungi that encompasses human and plant pathogens as well as industrial cell factories. Aspergilli have a highly diversified metabolism and, becau...
Autores principales: | , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2006
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1794588/ https://www.ncbi.nlm.nih.gov/pubmed/17107606 http://dx.doi.org/10.1186/gb-2006-7-11-r108 |
_version_ | 1782132218495238144 |
---|---|
author | David, Helga Hofmann, Gerald Oliveira, Ana Paula Jarmer, Hanne Nielsen, Jens |
author_facet | David, Helga Hofmann, Gerald Oliveira, Ana Paula Jarmer, Hanne Nielsen, Jens |
author_sort | David, Helga |
collection | PubMed |
description | BACKGROUND: Aspergillus nidulans (the asexual form of Emericella nidulans) is a model organism for aspergilli, which are an important group of filamentous fungi that encompasses human and plant pathogens as well as industrial cell factories. Aspergilli have a highly diversified metabolism and, because of their medical, agricultural and biotechnological importance, it would be valuable to have an understanding of how their metabolism is regulated. We therefore conducted a genome-wide transcription analysis of A. nidulans grown on three different carbon sources (glucose, glycerol, and ethanol) with the objective of identifying global regulatory structures. Furthermore, we reconstructed the complete metabolic network of this organism, which resulted in linking 666 genes to metabolic functions, as well as assigning metabolic roles to 472 genes that were previously uncharacterized. RESULTS: Through combination of the reconstructed metabolic network and the transcription data, we identified subnetwork structures that pointed to coordinated regulation of genes that are involved in many different parts of the metabolism. Thus, for a shift from glucose to ethanol, we identified coordinated regulation of the complete pathway for oxidation of ethanol, as well as upregulation of gluconeogenesis and downregulation of glycolysis and the pentose phosphate pathway. Furthermore, on change in carbon source from glucose to ethanol, the cells shift from using the pentose phosphate pathway as the major source of NADPH (nicotinamide adenine dinucleotide phosphatase, reduced form) for biosynthesis to use of the malic enzyme. CONCLUSION: Our analysis indicates that some of the genes are regulated by common transcription factors, making it possible to establish new putative links between known transcription factors and genes through clustering. |
format | Text |
id | pubmed-1794588 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2006 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-17945882007-02-08 Metabolic network driven analysis of genome-wide transcription data from Aspergillus nidulans David, Helga Hofmann, Gerald Oliveira, Ana Paula Jarmer, Hanne Nielsen, Jens Genome Biol Research BACKGROUND: Aspergillus nidulans (the asexual form of Emericella nidulans) is a model organism for aspergilli, which are an important group of filamentous fungi that encompasses human and plant pathogens as well as industrial cell factories. Aspergilli have a highly diversified metabolism and, because of their medical, agricultural and biotechnological importance, it would be valuable to have an understanding of how their metabolism is regulated. We therefore conducted a genome-wide transcription analysis of A. nidulans grown on three different carbon sources (glucose, glycerol, and ethanol) with the objective of identifying global regulatory structures. Furthermore, we reconstructed the complete metabolic network of this organism, which resulted in linking 666 genes to metabolic functions, as well as assigning metabolic roles to 472 genes that were previously uncharacterized. RESULTS: Through combination of the reconstructed metabolic network and the transcription data, we identified subnetwork structures that pointed to coordinated regulation of genes that are involved in many different parts of the metabolism. Thus, for a shift from glucose to ethanol, we identified coordinated regulation of the complete pathway for oxidation of ethanol, as well as upregulation of gluconeogenesis and downregulation of glycolysis and the pentose phosphate pathway. Furthermore, on change in carbon source from glucose to ethanol, the cells shift from using the pentose phosphate pathway as the major source of NADPH (nicotinamide adenine dinucleotide phosphatase, reduced form) for biosynthesis to use of the malic enzyme. CONCLUSION: Our analysis indicates that some of the genes are regulated by common transcription factors, making it possible to establish new putative links between known transcription factors and genes through clustering. BioMed Central 2006 2006-11-15 /pmc/articles/PMC1794588/ /pubmed/17107606 http://dx.doi.org/10.1186/gb-2006-7-11-r108 Text en Copyright © 2006 David et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an open access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research David, Helga Hofmann, Gerald Oliveira, Ana Paula Jarmer, Hanne Nielsen, Jens Metabolic network driven analysis of genome-wide transcription data from Aspergillus nidulans |
title | Metabolic network driven analysis of genome-wide transcription data from Aspergillus nidulans |
title_full | Metabolic network driven analysis of genome-wide transcription data from Aspergillus nidulans |
title_fullStr | Metabolic network driven analysis of genome-wide transcription data from Aspergillus nidulans |
title_full_unstemmed | Metabolic network driven analysis of genome-wide transcription data from Aspergillus nidulans |
title_short | Metabolic network driven analysis of genome-wide transcription data from Aspergillus nidulans |
title_sort | metabolic network driven analysis of genome-wide transcription data from aspergillus nidulans |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1794588/ https://www.ncbi.nlm.nih.gov/pubmed/17107606 http://dx.doi.org/10.1186/gb-2006-7-11-r108 |
work_keys_str_mv | AT davidhelga metabolicnetworkdrivenanalysisofgenomewidetranscriptiondatafromaspergillusnidulans AT hofmanngerald metabolicnetworkdrivenanalysisofgenomewidetranscriptiondatafromaspergillusnidulans AT oliveiraanapaula metabolicnetworkdrivenanalysisofgenomewidetranscriptiondatafromaspergillusnidulans AT jarmerhanne metabolicnetworkdrivenanalysisofgenomewidetranscriptiondatafromaspergillusnidulans AT nielsenjens metabolicnetworkdrivenanalysisofgenomewidetranscriptiondatafromaspergillusnidulans |