Cargando…
Long-wavelength sensitive visual pigments of the guppy (Poecilia reticulata): six opsins expressed in a single individual
BACKGROUND: The diversity of visual systems in fish has long been of interest for evolutionary biologists and neurophysiologists, and has recently begun to attract the attention of molecular evolutionary geneticists. Several recent studies on the copy number and genomic organization of visual pigmen...
Autores principales: | , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1796605/ https://www.ncbi.nlm.nih.gov/pubmed/17288569 http://dx.doi.org/10.1186/1471-2148-7-S1-S11 |
_version_ | 1782132242568445952 |
---|---|
author | Weadick, Cameron J Chang, Belinda SW |
author_facet | Weadick, Cameron J Chang, Belinda SW |
author_sort | Weadick, Cameron J |
collection | PubMed |
description | BACKGROUND: The diversity of visual systems in fish has long been of interest for evolutionary biologists and neurophysiologists, and has recently begun to attract the attention of molecular evolutionary geneticists. Several recent studies on the copy number and genomic organization of visual pigment proteins, the opsins, have revealed an increased opsin diversity in fish relative to most vertebrates, brought about through recent instances of opsin duplication and divergence. However, for the subfamily of opsin genes that mediate vision at the long-wavelength end of the spectrum, the LWS opsins, it appears that most fishes possess only one or two loci, a value comparable to most other vertebrates. Here, we characterize the LWS opsins from cDNA of an individual guppy, Poecilia reticulata, a fish that is known exhibit variation in its long-wavelength sensitive visual system, mate preferences and colour patterns. RESULTS: We identified six LWS opsins expressed within a single individual. Phylogenetic analysis revealed that these opsins descend from duplication events both pre-dating and following the divergence of the guppy lineage from that of the bluefin killifish, Lucania goodei, the closest species for which comparable data exists. Numerous amino acid substitutions exist among these different LWS opsins, many at sites known to be important for visual pigment function, including spectral sensitivity and G-protein activation. Likelihood analyses using codon-based models of evolution reveal significant changes in selective constraint along two of the guppy LWS opsin lineages. CONCLUSION: The guppy displays an unusually high number of LWS opsins compared to other fish, and to vertebrates in general. Observing both substitutions at functionally important sites and the persistence of lineages across species boundaries suggests that these opsins might have functionally different roles, especially with regard to G-protein activation. The reasons why are currently unknown, but may relate to aspects of the guppy's behavioural ecology, in which both male colour patterns and the female mate preferences for these colour patterns experience strong, highly variable selection pressures. |
format | Text |
id | pubmed-1796605 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2007 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-17966052007-02-09 Long-wavelength sensitive visual pigments of the guppy (Poecilia reticulata): six opsins expressed in a single individual Weadick, Cameron J Chang, Belinda SW BMC Evol Biol Research BACKGROUND: The diversity of visual systems in fish has long been of interest for evolutionary biologists and neurophysiologists, and has recently begun to attract the attention of molecular evolutionary geneticists. Several recent studies on the copy number and genomic organization of visual pigment proteins, the opsins, have revealed an increased opsin diversity in fish relative to most vertebrates, brought about through recent instances of opsin duplication and divergence. However, for the subfamily of opsin genes that mediate vision at the long-wavelength end of the spectrum, the LWS opsins, it appears that most fishes possess only one or two loci, a value comparable to most other vertebrates. Here, we characterize the LWS opsins from cDNA of an individual guppy, Poecilia reticulata, a fish that is known exhibit variation in its long-wavelength sensitive visual system, mate preferences and colour patterns. RESULTS: We identified six LWS opsins expressed within a single individual. Phylogenetic analysis revealed that these opsins descend from duplication events both pre-dating and following the divergence of the guppy lineage from that of the bluefin killifish, Lucania goodei, the closest species for which comparable data exists. Numerous amino acid substitutions exist among these different LWS opsins, many at sites known to be important for visual pigment function, including spectral sensitivity and G-protein activation. Likelihood analyses using codon-based models of evolution reveal significant changes in selective constraint along two of the guppy LWS opsin lineages. CONCLUSION: The guppy displays an unusually high number of LWS opsins compared to other fish, and to vertebrates in general. Observing both substitutions at functionally important sites and the persistence of lineages across species boundaries suggests that these opsins might have functionally different roles, especially with regard to G-protein activation. The reasons why are currently unknown, but may relate to aspects of the guppy's behavioural ecology, in which both male colour patterns and the female mate preferences for these colour patterns experience strong, highly variable selection pressures. BioMed Central 2007-02-08 /pmc/articles/PMC1796605/ /pubmed/17288569 http://dx.doi.org/10.1186/1471-2148-7-S1-S11 Text en Copyright © 2007 Weadick and Chang; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Weadick, Cameron J Chang, Belinda SW Long-wavelength sensitive visual pigments of the guppy (Poecilia reticulata): six opsins expressed in a single individual |
title | Long-wavelength sensitive visual pigments of the guppy (Poecilia reticulata): six opsins expressed in a single individual |
title_full | Long-wavelength sensitive visual pigments of the guppy (Poecilia reticulata): six opsins expressed in a single individual |
title_fullStr | Long-wavelength sensitive visual pigments of the guppy (Poecilia reticulata): six opsins expressed in a single individual |
title_full_unstemmed | Long-wavelength sensitive visual pigments of the guppy (Poecilia reticulata): six opsins expressed in a single individual |
title_short | Long-wavelength sensitive visual pigments of the guppy (Poecilia reticulata): six opsins expressed in a single individual |
title_sort | long-wavelength sensitive visual pigments of the guppy (poecilia reticulata): six opsins expressed in a single individual |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1796605/ https://www.ncbi.nlm.nih.gov/pubmed/17288569 http://dx.doi.org/10.1186/1471-2148-7-S1-S11 |
work_keys_str_mv | AT weadickcameronj longwavelengthsensitivevisualpigmentsoftheguppypoeciliareticulatasixopsinsexpressedinasingleindividual AT changbelindasw longwavelengthsensitivevisualpigmentsoftheguppypoeciliareticulatasixopsinsexpressedinasingleindividual |