Cargando…
Bias in random forest variable importance measures: Illustrations, sources and a solution
BACKGROUND: Variable importance measures for random forests have been receiving increased attention as a means of variable selection in many classification tasks in bioinformatics and related scientific fields, for instance to select a subset of genetic markers relevant for the prediction of a certa...
Autores principales: | Strobl, Carolin, Boulesteix, Anne-Laure, Zeileis, Achim, Hothorn, Torsten |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1796903/ https://www.ncbi.nlm.nih.gov/pubmed/17254353 http://dx.doi.org/10.1186/1471-2105-8-25 |
Ejemplares similares
-
Conditional variable importance for random forests
por: Strobl, Carolin, et al.
Publicado: (2008) -
An AUC-based permutation variable importance measure for random forests
por: Janitza, Silke, et al.
Publicado: (2013) -
Testing the additional predictive value of high-dimensional molecular data
por: Boulesteix, Anne-Laure, et al.
Publicado: (2010) -
Publication Bias in Methodological Computational Research
por: Boulesteix, Anne-Laure, et al.
Publicado: (2015) -
Optimal classifier selection and negative bias in error rate estimation: an empirical study on high-dimensional prediction
por: Boulesteix, Anne-Laure, et al.
Publicado: (2009)