Cargando…
Detecting differential expression in microarray data: comparison of optimal procedures
BACKGROUND: Many procedures for finding differentially expressed genes in microarray data are based on classical or modified t-statistics. Due to multiple testing considerations, the false discovery rate (FDR) is the key tool for assessing the significance of these test statistics. Two recent papers...
Autores principales: | Perelman, Elena, Ploner, Alexander, Calza, Stefano, Pawitan, Yudi |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1797811/ https://www.ncbi.nlm.nih.gov/pubmed/17257426 http://dx.doi.org/10.1186/1471-2105-8-28 |
Ejemplares similares
-
Filtering genes to improve sensitivity in oligonucleotide microarray data analysis
por: Calza, Stefano, et al.
Publicado: (2007) -
Correlation test to assess low-level processing of high-density oligonucleotide microarray data
por: Ploner, Alexander, et al.
Publicado: (2005) -
Normalization of oligonucleotide arrays based on the least-variant set of genes
por: Calza, Stefano, et al.
Publicado: (2008) -
A fast detection of fusion genes from paired-end RNA-seq data
por: Vu, Trung Nghia, et al.
Publicado: (2018) -
Correlating gene and protein expression data using Correlated Factor Analysis
por: Tan, Chuen Seng, et al.
Publicado: (2009)