Cargando…
Hybrid elementary flux analysis/nonparametric modeling: application for bioprocess control
BACKGROUND: The progress in the "-omic" sciences has allowed a deeper knowledge on many biological systems with industrial interest. This knowledge is still rarely used for advanced bioprocess monitoring and control at the bioreactor level. In this work, a bioprocess control method is pres...
Autores principales: | , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1800868/ https://www.ncbi.nlm.nih.gov/pubmed/17261182 http://dx.doi.org/10.1186/1471-2105-8-30 |
_version_ | 1782132355899588608 |
---|---|
author | Teixeira, Ana P Alves, Carlos Alves, Paula M Carrondo, Manuel JT Oliveira, Rui |
author_facet | Teixeira, Ana P Alves, Carlos Alves, Paula M Carrondo, Manuel JT Oliveira, Rui |
author_sort | Teixeira, Ana P |
collection | PubMed |
description | BACKGROUND: The progress in the "-omic" sciences has allowed a deeper knowledge on many biological systems with industrial interest. This knowledge is still rarely used for advanced bioprocess monitoring and control at the bioreactor level. In this work, a bioprocess control method is presented, which is designed on the basis of the metabolic network of the organism under consideration. The bioprocess dynamics are formulated using hybrid rigorous/data driven systems and its inherent structure is defined by the metabolism elementary modes. RESULTS: The metabolic network of the system under study is decomposed into elementary modes (EMs), which are the simplest paths able to operate coherently in steady-state. A reduced reaction mechanism in the form of simplified reactions connecting substrates with end-products is obtained. A dynamical hybrid system integrating material balance equations, EMs reactions stoichiometry and kinetics was formulated. EMs kinetics were defined as the product of two terms: a mechanistic/empirical known term and an unknown term that must be identified from data, in a process optimisation perspective. This approach allows the quantification of fluxes carried by individual elementary modes which is of great help to identify dominant pathways as a function of environmental conditions. The methodology was employed to analyse experimental data of recombinant Baby Hamster Kidney (BHK-21A) cultures producing a recombinant fusion glycoprotein. The identified EMs kinetics demonstrated typical glucose and glutamine metabolic responses during cell growth and IgG1-IL2 synthesis. Finally, an online optimisation study was conducted in which the optimal feeding strategies of glucose and glutamine were calculated after re-estimation of model parameters at each sampling time. An improvement in the final product concentration was obtained as a result of this online optimisation. CONCLUSION: The main contribution of this work is a novel bioreactor optimal control method that uses detailed information concerning the metabolism of the underlying biological system. Moreover, the method allows the identification of structural modifications in metabolism over batch time. |
format | Text |
id | pubmed-1800868 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2007 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-18008682007-02-23 Hybrid elementary flux analysis/nonparametric modeling: application for bioprocess control Teixeira, Ana P Alves, Carlos Alves, Paula M Carrondo, Manuel JT Oliveira, Rui BMC Bioinformatics Methodology Article BACKGROUND: The progress in the "-omic" sciences has allowed a deeper knowledge on many biological systems with industrial interest. This knowledge is still rarely used for advanced bioprocess monitoring and control at the bioreactor level. In this work, a bioprocess control method is presented, which is designed on the basis of the metabolic network of the organism under consideration. The bioprocess dynamics are formulated using hybrid rigorous/data driven systems and its inherent structure is defined by the metabolism elementary modes. RESULTS: The metabolic network of the system under study is decomposed into elementary modes (EMs), which are the simplest paths able to operate coherently in steady-state. A reduced reaction mechanism in the form of simplified reactions connecting substrates with end-products is obtained. A dynamical hybrid system integrating material balance equations, EMs reactions stoichiometry and kinetics was formulated. EMs kinetics were defined as the product of two terms: a mechanistic/empirical known term and an unknown term that must be identified from data, in a process optimisation perspective. This approach allows the quantification of fluxes carried by individual elementary modes which is of great help to identify dominant pathways as a function of environmental conditions. The methodology was employed to analyse experimental data of recombinant Baby Hamster Kidney (BHK-21A) cultures producing a recombinant fusion glycoprotein. The identified EMs kinetics demonstrated typical glucose and glutamine metabolic responses during cell growth and IgG1-IL2 synthesis. Finally, an online optimisation study was conducted in which the optimal feeding strategies of glucose and glutamine were calculated after re-estimation of model parameters at each sampling time. An improvement in the final product concentration was obtained as a result of this online optimisation. CONCLUSION: The main contribution of this work is a novel bioreactor optimal control method that uses detailed information concerning the metabolism of the underlying biological system. Moreover, the method allows the identification of structural modifications in metabolism over batch time. BioMed Central 2007-01-29 /pmc/articles/PMC1800868/ /pubmed/17261182 http://dx.doi.org/10.1186/1471-2105-8-30 Text en Copyright © 2007 Teixeira et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Methodology Article Teixeira, Ana P Alves, Carlos Alves, Paula M Carrondo, Manuel JT Oliveira, Rui Hybrid elementary flux analysis/nonparametric modeling: application for bioprocess control |
title | Hybrid elementary flux analysis/nonparametric modeling: application for bioprocess control |
title_full | Hybrid elementary flux analysis/nonparametric modeling: application for bioprocess control |
title_fullStr | Hybrid elementary flux analysis/nonparametric modeling: application for bioprocess control |
title_full_unstemmed | Hybrid elementary flux analysis/nonparametric modeling: application for bioprocess control |
title_short | Hybrid elementary flux analysis/nonparametric modeling: application for bioprocess control |
title_sort | hybrid elementary flux analysis/nonparametric modeling: application for bioprocess control |
topic | Methodology Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1800868/ https://www.ncbi.nlm.nih.gov/pubmed/17261182 http://dx.doi.org/10.1186/1471-2105-8-30 |
work_keys_str_mv | AT teixeiraanap hybridelementaryfluxanalysisnonparametricmodelingapplicationforbioprocesscontrol AT alvescarlos hybridelementaryfluxanalysisnonparametricmodelingapplicationforbioprocesscontrol AT alvespaulam hybridelementaryfluxanalysisnonparametricmodelingapplicationforbioprocesscontrol AT carrondomanueljt hybridelementaryfluxanalysisnonparametricmodelingapplicationforbioprocesscontrol AT oliveirarui hybridelementaryfluxanalysisnonparametricmodelingapplicationforbioprocesscontrol |