Cargando…
Boolean networks using the chi-square test for inferring large-scale gene regulatory networks
BACKGROUND: Boolean network (BN) modeling is a commonly used method for constructing gene regulatory networks from time series microarray data. However, its major drawback is that its computation time is very high or often impractical to construct large-scale gene networks. We propose a variable sel...
Autores principales: | Kim, Haseong, Lee, Jae K, Park, Taesung |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1802094/ https://www.ncbi.nlm.nih.gov/pubmed/17270045 http://dx.doi.org/10.1186/1471-2105-8-37 |
Ejemplares similares
-
Stochastic Boolean networks: An efficient approach to modeling gene regulatory networks
por: Liang, Jinghang, et al.
Publicado: (2012) -
Boolean network simulations for life scientists
por: Albert, István, et al.
Publicado: (2008) -
Review and assessment of Boolean approaches for inference of gene regulatory networks
por: Pušnik, Žiga, et al.
Publicado: (2022) -
Comparison of probabilistic Boolean network and dynamic Bayesian network approaches for inferring gene regulatory networks
por: Li, Peng, et al.
Publicado: (2007) -
Discovery of Boolean metabolic networks: integer linear programming based approach
por: Qiu, Yushan, et al.
Publicado: (2018)