Cargando…
Toxin–antitoxin regulation: bimodal interaction of YefM–YoeB with paired DNA palindromes exerts transcriptional autorepression
Toxin–antitoxin (TA) complexes function in programmed cell death or stress response mechanisms in bacteria. The YefM–YoeB TA complex of Escherichia coli consists of YoeB toxin that is counteracted by YefM antitoxin. When liberated from the complex, YoeB acts as an endoribonuclease, preferentially cl...
Autores principales: | , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1802561/ https://www.ncbi.nlm.nih.gov/pubmed/17170003 http://dx.doi.org/10.1093/nar/gkl1028 |
_version_ | 1782132382161174528 |
---|---|
author | Kędzierska, Barbara Lian, Lu-Yun Hayes, Finbarr |
author_facet | Kędzierska, Barbara Lian, Lu-Yun Hayes, Finbarr |
author_sort | Kędzierska, Barbara |
collection | PubMed |
description | Toxin–antitoxin (TA) complexes function in programmed cell death or stress response mechanisms in bacteria. The YefM–YoeB TA complex of Escherichia coli consists of YoeB toxin that is counteracted by YefM antitoxin. When liberated from the complex, YoeB acts as an endoribonuclease, preferentially cleaving 3′ of purine nucleotides. Here we demonstrate that yefM-yoeB is transcriptionally autoregulated. YefM, a dimeric protein with extensive secondary structure revealed by circular dichroism (CD) and nuclear magnetic resonance (NMR) spectroscopy, is the primary repressor, whereas YoeB is a repression enhancer. The operator site 5′ of yefM-yoeB comprises adjacent long and short palindromes with core 5′-TGTACA-3′ motifs. YefM binds the long palindrome, followed sequentially by short palindrome recognition. In contrast, the repressor–corepressor complex recognizes both motifs more avidly, impyling that YefM within the complex has an enhanced DNA-binding affinity compared to free YefM. Operator interaction by YefM and YefM–YoeB is accompanied by structural transitions in the proteins. Paired 5′-TGTACA-3′ motifs are common in yefM-yoeB regulatory regions in diverse genomes suggesting that interaction of YefM–YoeB with these motifs is a conserved mechanism of operon autoregulation. Artificial perturbation of transcriptional autorepression could elicit inappropriate YoeB toxin production and induction of bacterial cell suicide, a potentially novel antibacterial strategy. |
format | Text |
id | pubmed-1802561 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2007 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-18025612007-03-01 Toxin–antitoxin regulation: bimodal interaction of YefM–YoeB with paired DNA palindromes exerts transcriptional autorepression Kędzierska, Barbara Lian, Lu-Yun Hayes, Finbarr Nucleic Acids Res Molecular Biology Toxin–antitoxin (TA) complexes function in programmed cell death or stress response mechanisms in bacteria. The YefM–YoeB TA complex of Escherichia coli consists of YoeB toxin that is counteracted by YefM antitoxin. When liberated from the complex, YoeB acts as an endoribonuclease, preferentially cleaving 3′ of purine nucleotides. Here we demonstrate that yefM-yoeB is transcriptionally autoregulated. YefM, a dimeric protein with extensive secondary structure revealed by circular dichroism (CD) and nuclear magnetic resonance (NMR) spectroscopy, is the primary repressor, whereas YoeB is a repression enhancer. The operator site 5′ of yefM-yoeB comprises adjacent long and short palindromes with core 5′-TGTACA-3′ motifs. YefM binds the long palindrome, followed sequentially by short palindrome recognition. In contrast, the repressor–corepressor complex recognizes both motifs more avidly, impyling that YefM within the complex has an enhanced DNA-binding affinity compared to free YefM. Operator interaction by YefM and YefM–YoeB is accompanied by structural transitions in the proteins. Paired 5′-TGTACA-3′ motifs are common in yefM-yoeB regulatory regions in diverse genomes suggesting that interaction of YefM–YoeB with these motifs is a conserved mechanism of operon autoregulation. Artificial perturbation of transcriptional autorepression could elicit inappropriate YoeB toxin production and induction of bacterial cell suicide, a potentially novel antibacterial strategy. Oxford University Press 2007-01 2006-12-14 /pmc/articles/PMC1802561/ /pubmed/17170003 http://dx.doi.org/10.1093/nar/gkl1028 Text en © 2006 The Author(s) This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Molecular Biology Kędzierska, Barbara Lian, Lu-Yun Hayes, Finbarr Toxin–antitoxin regulation: bimodal interaction of YefM–YoeB with paired DNA palindromes exerts transcriptional autorepression |
title | Toxin–antitoxin regulation: bimodal interaction of YefM–YoeB with paired DNA palindromes exerts transcriptional autorepression |
title_full | Toxin–antitoxin regulation: bimodal interaction of YefM–YoeB with paired DNA palindromes exerts transcriptional autorepression |
title_fullStr | Toxin–antitoxin regulation: bimodal interaction of YefM–YoeB with paired DNA palindromes exerts transcriptional autorepression |
title_full_unstemmed | Toxin–antitoxin regulation: bimodal interaction of YefM–YoeB with paired DNA palindromes exerts transcriptional autorepression |
title_short | Toxin–antitoxin regulation: bimodal interaction of YefM–YoeB with paired DNA palindromes exerts transcriptional autorepression |
title_sort | toxin–antitoxin regulation: bimodal interaction of yefm–yoeb with paired dna palindromes exerts transcriptional autorepression |
topic | Molecular Biology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1802561/ https://www.ncbi.nlm.nih.gov/pubmed/17170003 http://dx.doi.org/10.1093/nar/gkl1028 |
work_keys_str_mv | AT kedzierskabarbara toxinantitoxinregulationbimodalinteractionofyefmyoebwithpaireddnapalindromesexertstranscriptionalautorepression AT lianluyun toxinantitoxinregulationbimodalinteractionofyefmyoebwithpaireddnapalindromesexertstranscriptionalautorepression AT hayesfinbarr toxinantitoxinregulationbimodalinteractionofyefmyoebwithpaireddnapalindromesexertstranscriptionalautorepression |