Cargando…
Dispersion of the RmInt1 group II intron in the Sinorhizobium meliloti genome upon acquisition by conjugative transfer
RmInt1 is a self-splicing and mobile group II intron initially identified in the bacterium Sinorhizobium meliloti, which encodes a reverse transcriptase–maturase (Intron Encoded Protein, IEP) lacking the C-terminal DNA binding (D) and DNA endonuclease domains (En). RmInt1 invades cognate intronless...
Autores principales: | , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1802570/ https://www.ncbi.nlm.nih.gov/pubmed/17158161 http://dx.doi.org/10.1093/nar/gkl1072 |
Sumario: | RmInt1 is a self-splicing and mobile group II intron initially identified in the bacterium Sinorhizobium meliloti, which encodes a reverse transcriptase–maturase (Intron Encoded Protein, IEP) lacking the C-terminal DNA binding (D) and DNA endonuclease domains (En). RmInt1 invades cognate intronless homing sites (ISRm2011-2) by a mechanism known as retrohoming. This work describes how the RmInt1 intron spreads in the S.meliloti genome upon acquisition by conjugation. This process was revealed by using the wild-type intron RmInt1 and engineered intron-donor constructs based on ribozyme coding sequence (ΔORF)-derivatives with higher homing efficiency than the wild-type intron. The data demonstrate that RmInt1 propagates into the S.meliloti genome primarily by retrohoming with a strand bias related to replication of the chromosome and symbiotic megaplasmids. Moreover, we show that when expressed in trans from a separate plasmid, the IEP is able to mobilize genomic ΔORF ribozymes that afterward displayed wild-type levels of retrohoming. Our results contribute to get further understanding of how group II introns spread into bacterial genomes in nature. |
---|