Cargando…
msmsEval: tandem mass spectral quality assignment for high-throughput proteomics
BACKGROUND: In proteomics experiments, database-search programs are the method of choice for protein identification from tandem mass spectra. As amino acid sequence databases grow however, computing resources required for these programs have become prohibitive, particularly in searches for modified...
Autores principales: | , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1803797/ https://www.ncbi.nlm.nih.gov/pubmed/17291342 http://dx.doi.org/10.1186/1471-2105-8-51 |
_version_ | 1782132434915033088 |
---|---|
author | Wong, Jason WH Sullivan, Matthew J Cartwright, Hugh M Cagney, Gerard |
author_facet | Wong, Jason WH Sullivan, Matthew J Cartwright, Hugh M Cagney, Gerard |
author_sort | Wong, Jason WH |
collection | PubMed |
description | BACKGROUND: In proteomics experiments, database-search programs are the method of choice for protein identification from tandem mass spectra. As amino acid sequence databases grow however, computing resources required for these programs have become prohibitive, particularly in searches for modified proteins. Recently, methods to limit the number of spectra to be searched based on spectral quality have been proposed by different research groups, but rankings of spectral quality have thus far been based on arbitrary cut-off values. In this work, we develop a more readily interpretable spectral quality statistic by providing probability values for the likelihood that spectra will be identifiable. RESULTS: We describe an application, msmsEval, that builds on previous work by statistically modeling the spectral quality discriminant function using a Gaussian mixture model. This allows a researcher to filter spectra based on the probability that a spectrum will ultimately be identified by database searching. We show that spectra that are predicted by msmsEval to be of high quality, yet remain unidentified in standard database searches, are candidates for more intensive search strategies. Using a well studied public dataset we also show that a high proportion (83.9%) of the spectra predicted by msmsEval to be of high quality but that elude standard search strategies, are in fact interpretable. CONCLUSION: msmsEval will be useful for high-throughput proteomics projects and is freely available for download from . Supports Windows, Mac OS X and Linux/Unix operating systems. |
format | Text |
id | pubmed-1803797 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2007 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-18037972007-02-23 msmsEval: tandem mass spectral quality assignment for high-throughput proteomics Wong, Jason WH Sullivan, Matthew J Cartwright, Hugh M Cagney, Gerard BMC Bioinformatics Methodology Article BACKGROUND: In proteomics experiments, database-search programs are the method of choice for protein identification from tandem mass spectra. As amino acid sequence databases grow however, computing resources required for these programs have become prohibitive, particularly in searches for modified proteins. Recently, methods to limit the number of spectra to be searched based on spectral quality have been proposed by different research groups, but rankings of spectral quality have thus far been based on arbitrary cut-off values. In this work, we develop a more readily interpretable spectral quality statistic by providing probability values for the likelihood that spectra will be identifiable. RESULTS: We describe an application, msmsEval, that builds on previous work by statistically modeling the spectral quality discriminant function using a Gaussian mixture model. This allows a researcher to filter spectra based on the probability that a spectrum will ultimately be identified by database searching. We show that spectra that are predicted by msmsEval to be of high quality, yet remain unidentified in standard database searches, are candidates for more intensive search strategies. Using a well studied public dataset we also show that a high proportion (83.9%) of the spectra predicted by msmsEval to be of high quality but that elude standard search strategies, are in fact interpretable. CONCLUSION: msmsEval will be useful for high-throughput proteomics projects and is freely available for download from . Supports Windows, Mac OS X and Linux/Unix operating systems. BioMed Central 2007-02-09 /pmc/articles/PMC1803797/ /pubmed/17291342 http://dx.doi.org/10.1186/1471-2105-8-51 Text en Copyright © 2007 Wong et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Methodology Article Wong, Jason WH Sullivan, Matthew J Cartwright, Hugh M Cagney, Gerard msmsEval: tandem mass spectral quality assignment for high-throughput proteomics |
title | msmsEval: tandem mass spectral quality assignment for high-throughput proteomics |
title_full | msmsEval: tandem mass spectral quality assignment for high-throughput proteomics |
title_fullStr | msmsEval: tandem mass spectral quality assignment for high-throughput proteomics |
title_full_unstemmed | msmsEval: tandem mass spectral quality assignment for high-throughput proteomics |
title_short | msmsEval: tandem mass spectral quality assignment for high-throughput proteomics |
title_sort | msmseval: tandem mass spectral quality assignment for high-throughput proteomics |
topic | Methodology Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1803797/ https://www.ncbi.nlm.nih.gov/pubmed/17291342 http://dx.doi.org/10.1186/1471-2105-8-51 |
work_keys_str_mv | AT wongjasonwh msmsevaltandemmassspectralqualityassignmentforhighthroughputproteomics AT sullivanmatthewj msmsevaltandemmassspectralqualityassignmentforhighthroughputproteomics AT cartwrighthughm msmsevaltandemmassspectralqualityassignmentforhighthroughputproteomics AT cagneygerard msmsevaltandemmassspectralqualityassignmentforhighthroughputproteomics |