Cargando…
A parallel genetic algorithm for single class pattern classification and its application for gene expression profiling in Streptomyces coelicolor
BACKGROUND: Identification of coordinately regulated genes according to the level of their expression during the time course of a process allows for discovering functional relationships among genes involved in the process. RESULTS: We present a single class classification method for the identificati...
Autores principales: | , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1804277/ https://www.ncbi.nlm.nih.gov/pubmed/17298664 http://dx.doi.org/10.1186/1471-2164-8-49 |
_version_ | 1782132449476608000 |
---|---|
author | To, Cuong C Vohradsky, Jiri |
author_facet | To, Cuong C Vohradsky, Jiri |
author_sort | To, Cuong C |
collection | PubMed |
description | BACKGROUND: Identification of coordinately regulated genes according to the level of their expression during the time course of a process allows for discovering functional relationships among genes involved in the process. RESULTS: We present a single class classification method for the identification of genes of similar function from a gene expression time series. It is based on a parallel genetic algorithm which is a supervised computer learning method exploiting prior knowledge of gene function to identify unknown genes of similar function from expression data. The algorithm was tested with a set of randomly generated patterns; the results were compared with seven other classification algorithms including support vector machines. The algorithm avoids several problems associated with unsupervised clustering methods, and it shows better performance then the other algorithms. The algorithm was applied to the identification of secondary metabolite gene clusters of the antibiotic-producing eubacterium Streptomyces coelicolor. The algorithm also identified pathways associated with transport of the secondary metabolites out of the cell. We used the method for the prediction of the functional role of particular ORFs based on the expression data. CONCLUSION: Through analysis of a time series of gene expression, the algorithm identifies pathways which are directly or indirectly associated with genes of interest, and which are active during the time course of the experiment. |
format | Text |
id | pubmed-1804277 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2007 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-18042772007-02-26 A parallel genetic algorithm for single class pattern classification and its application for gene expression profiling in Streptomyces coelicolor To, Cuong C Vohradsky, Jiri BMC Genomics Research Article BACKGROUND: Identification of coordinately regulated genes according to the level of their expression during the time course of a process allows for discovering functional relationships among genes involved in the process. RESULTS: We present a single class classification method for the identification of genes of similar function from a gene expression time series. It is based on a parallel genetic algorithm which is a supervised computer learning method exploiting prior knowledge of gene function to identify unknown genes of similar function from expression data. The algorithm was tested with a set of randomly generated patterns; the results were compared with seven other classification algorithms including support vector machines. The algorithm avoids several problems associated with unsupervised clustering methods, and it shows better performance then the other algorithms. The algorithm was applied to the identification of secondary metabolite gene clusters of the antibiotic-producing eubacterium Streptomyces coelicolor. The algorithm also identified pathways associated with transport of the secondary metabolites out of the cell. We used the method for the prediction of the functional role of particular ORFs based on the expression data. CONCLUSION: Through analysis of a time series of gene expression, the algorithm identifies pathways which are directly or indirectly associated with genes of interest, and which are active during the time course of the experiment. BioMed Central 2007-02-13 /pmc/articles/PMC1804277/ /pubmed/17298664 http://dx.doi.org/10.1186/1471-2164-8-49 Text en Copyright © 2007 To and Vohradsky; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article To, Cuong C Vohradsky, Jiri A parallel genetic algorithm for single class pattern classification and its application for gene expression profiling in Streptomyces coelicolor |
title | A parallel genetic algorithm for single class pattern classification and its application for gene expression profiling in Streptomyces coelicolor |
title_full | A parallel genetic algorithm for single class pattern classification and its application for gene expression profiling in Streptomyces coelicolor |
title_fullStr | A parallel genetic algorithm for single class pattern classification and its application for gene expression profiling in Streptomyces coelicolor |
title_full_unstemmed | A parallel genetic algorithm for single class pattern classification and its application for gene expression profiling in Streptomyces coelicolor |
title_short | A parallel genetic algorithm for single class pattern classification and its application for gene expression profiling in Streptomyces coelicolor |
title_sort | parallel genetic algorithm for single class pattern classification and its application for gene expression profiling in streptomyces coelicolor |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1804277/ https://www.ncbi.nlm.nih.gov/pubmed/17298664 http://dx.doi.org/10.1186/1471-2164-8-49 |
work_keys_str_mv | AT tocuongc aparallelgeneticalgorithmforsingleclasspatternclassificationanditsapplicationforgeneexpressionprofilinginstreptomycescoelicolor AT vohradskyjiri aparallelgeneticalgorithmforsingleclasspatternclassificationanditsapplicationforgeneexpressionprofilinginstreptomycescoelicolor AT tocuongc parallelgeneticalgorithmforsingleclasspatternclassificationanditsapplicationforgeneexpressionprofilinginstreptomycescoelicolor AT vohradskyjiri parallelgeneticalgorithmforsingleclasspatternclassificationanditsapplicationforgeneexpressionprofilinginstreptomycescoelicolor |