Cargando…
PET tracer development—a tale of mice and men
PET scanning is an emerging technology for the clinical evaluation of many disease processes in man. The vast majority of clinical positron emission tomography (PET) studies are performed using a single tracer, fluorodeoxyglucose. Despite the excellent diagnostic performance of this tracer, it has r...
Autores principales: | , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
e-MED
2006
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1805077/ https://www.ncbi.nlm.nih.gov/pubmed/17114061 http://dx.doi.org/10.1102/1470-7330.2006.9098 |
Sumario: | PET scanning is an emerging technology for the clinical evaluation of many disease processes in man. The vast majority of clinical positron emission tomography (PET) studies are performed using a single tracer, fluorodeoxyglucose. Despite the excellent diagnostic performance of this tracer, it has recognised limitations. New tracers offer the potential to both address these limitations, and to establish new applications for PET. Small animal PET is a logical technique for validating new tracers relevant to human diseases. However, interspecies differences in the handling of chemicals may significantly influence the handling of novel tracers. This requires caution in extrapolating findings in animals to expectations of performance in man. Already there are several examples where biodistribution studies in mice would not have predicted the clinical utility of existing PET tracers. Nevertheless, application of a systematic approach to tracer development is likely to speed transition of new tracers from animals into man. |
---|